We demonstrate a compact diode-pumped Yb:KGW femtosecond oscillator-Yb:YAG Innoslab amplifier master oscillator power amplifier (MOPA) with nearly transform-limited 636 fs pulses at 620 W average output power, 20 MHz repetition rate, and beam quality of M(x)(2) = 1.43 and M(y)(2) = 1.35. By cascading two amplifiers, we attain an average output power of 1.1 kW, a peak power of 80 MW, and a 615 fs pulse width in a single linearly polarized beam. The power-scalable MOPA is operated at room temperature, and no chirped-pulse amplification technique is used.
Coherently enhancing laser pulses in a passive cavity provides ideal conditions for high-order harmonic generation in a gas, with repetition rates around 100 MHz (refs 1,2,3). Recently, extreme-ultraviolet radiation with photon energies of up to 30 eV was obtained, which is sufficiently bright for direct frequency-comb spectroscopy at 20 eV (ref. 4). Here, we identify a route to scaling these radiation sources to higher photon energies. We demonstrate that the ionization-limited attainable intracavity peak intensity increases with decreasing pulse duration. By enhancing nonlinearly compressed pulses of an Yb-based laser and coupling out the harmonics through a pierced cavity mirror, we generate spatially coherent 108 eV (11.45 nm) radiation at 78 MHz. Exploiting the full potential of the demonstrated techniques will afford high-photon-flux ultrashort-pulsed extreme-ultraviolet sources for a number of applications in science and technology, including photoelectron spectroscopy, coincidence spectroscopy with femtosecond to attosecond resolution and characterization of components and materials for nanolithography
We demonstrate a scheme for nonlinear pulse compression at high average powers based on self-phase modulation in a multi-pass cell using fused silica as the nonlinear medium. The scheme is suitable for compression of pulses with peak powers exceeding the threshold for critical self-focusing. At >400 W of input power, the pulses of a Yb:YAG-Innoslab laser system (10 MHz repetition rate, 850 fs pulse duration) are spectrally broadened from 1.6 to >13.5 nm bandwidth while maintaining almost diffraction-limited beam quality. The chirp is removed with a dispersive mirror compressor, and pulse durations of 170 fs at an output power of 375 W are achieved. The compression unit reaches an overall transmission of >90%.
The Innoslab design, already established for neodymium doped laser crystals, was applied to ytterbium doped laser materials. Recent progresses in brightness of high power diode lasers facilitate efficient pumping of quasi-three-level laser materials. Innoslab amplifiers are compared to competing thin-disk and fiber fs-amplifiers. A compact diode-pumped Yb:YAG Innoslab fs-oscillator-amplifier system, scalable to the kilowatt range, was realized. Numerical simulations result in conditions for high efficiency and beam quality. Nearly transform and diffraction limited 680 fs pulses at 400 W average output power and 76 MHz repetition rate without using CPA technology have been achieved at room temperature so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.