Bacterial cells often face hostile environmental conditions, to which they adapt by activation of stress responses. In Escherichia coli, environmental stresses resulting in significant reduction in growth rate stimulate the expression of the rpoS gene, encoding the alternative σ factor σ(S). The σ(S) protein associates with RNA polymerase, and through transcription of genes belonging to the rpoS regulon allows the activation of a 'general stress response', which protects the bacterial cell from harmful environmental conditions. Each step of this process is finely tuned in order to cater to the needs of the bacterial cell: in particular, selective promoter recognition by σ(S) is achieved through small deviations from a common consensus DNA sequence for both σ(S) and the housekeeping σ(70). Recognition of specific DNA elements by σ(S) is integrated with the effects of environmental signals and the interaction with regulatory proteins, in what represents a fascinating example of multifactorial regulation of gene expression. In this report, we discuss the function of the rpoS gene in the general stress response, and review the current knowledge on regulation of rpoS expression and on promoter recognition by σ(S).
In bacteria, selective promoter recognition by RNA polymerase is achieved by its association with σ factors, accessory subunits able to direct RNA polymerase “core enzyme” (E) to different promoter sequences. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), we searched for promoters bound by the σS-associated RNA polymerase form (EσS) during transition from exponential to stationary phase. We identified 63 binding sites for EσS overlapping known or putative promoters, often located upstream of genes (encoding either ORFs or non-coding RNAs) showing at least some degree of dependence on the σS-encoding rpoS gene. EσS binding did not always correlate with an increase in transcription level, suggesting that, at some σS-dependent promoters, EσS might remain poised in a pre-initiation state upon binding. A large fraction of EσS-binding sites corresponded to promoters recognized by RNA polymerase associated with σ70 or other σ factors, suggesting a considerable overlap in promoter recognition between different forms of RNA polymerase. In particular, EσS appears to contribute significantly to transcription of genes encoding proteins involved in LPS biosynthesis and in cell surface composition. Finally, our results highlight a direct role of EσS in the regulation of non coding RNAs, such as OmrA/B, RyeA/B and SibC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.