Site-specific relative quantification of β-lactoglobulin modifications in heated milk and dairy products was performed to determine their thermal and nonthermal origins and to evaluate marker candidates for milk processing. Therefore, formation kinetics of 19 different structures at 26 binding sites were analyzed by ultrahigh-performance liquid chromatography-tandem mass spectrometry with multiple reaction monitoring (UHPLC-MS/MS/MRM) after specific protein hydrolysis. The results indicate that (i) site-specific analysis of lactulosyllysine may be a more sensitive marker for mild heat treatment than its overall content; (ii) N(ε)-carboxymethyllysine, N-terminal ketoamide, and asparagine deamidation are of thermal origin and may be good markers for rather intensive heat treatment, whereas N(ε)-carboxyethyllysine reflects thermal and nonthermal processes; (iii) the relevance of methylglyoxal-derived arginine modifications is low compared to that of other modifications; (iv) oxidation of methionine and cysteine is a rather weak indicator of thermal impact; and (v) the tryptophan modifications formylkynurenine and kynurenine are of nonthermal origin and further degraded during processing.
Nonenzymatic post-translational protein modifications (nePTMs) result in changes of the protein structure that may severely influence physiological and technological protein functions. In the present study, ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) was applied for the systematic identification and site-specific analysis of nePTMs of β-lactoglobulin in processed milk. For this purpose, β-lactoglobulin, which had been heated with lactose under conditions to force nePTM formation (7 d/60 °C), was screened for predicted modifications by using full scans and enhanced resolution scan experiments combined with enhanced product ion scans. Thus, the main glycation, glycoxidation, oxidation, and deamidation products of lysine, arginine, methionine, cysteine, tryptophan, and asparagine, as well as the N-terminus, were identified. Using these MS data, a very sensitive scheduled multiple reaction monitoring method suitable for the analysis of milk products was developed. Consequently, 14 different PTM structures on 25 binding sites of β-lactoglobulin were detected in different milk products.
Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.