The extraordinarily high toxicity of botulinum neurotoxins primarily results from their specific binding and uptake into neurons. At motor neurons, the seven BoNT (botulinum neurotoxin) serotypes A-G inhibit acetylcholine release leading to flaccid paralysis. Uptake of BoNT/A, B, E, F and G requires a dual interaction with gangliosides and the synaptic vesicle proteins synaptotagmin or SV2 (synaptic vesicle glycoprotein 2), whereas little is known about the cell entry mechanisms of the serotypes C and D, which display the lowest amino acid sequence identity compared with the other five serotypes. In the present study we demonstrate that the neurotoxicity of BoNT/D depends on the presence of gangliosides by employing phrenic nerve hemidiaphragm preparations derived from mice expressing the gangliosides GM3, GM2, GM1 and GD1a, or only GM3 [a description of our use of ganglioside nomenclature is given in Svennerholm (1994) Prog. Brain Res. 101, XI-XIV]. High-resolution crystal structures of the 50 kDa cell-binding domain of BoNT/D alone and in complex with sialic acid, as well as biological analyses of single-site BoNT/D mutants identified two carbohydrate-binding sites. One site is located at a position previously identified in BoNT/A, B, E, F and G, but is lacking the conserved SXWY motif. The other site, co-ordinating one molecule of sialic acid, resembles the second ganglioside-binding pocket (the sialic-acid-binding site) of TeNT (tetanus neurotoxin).
Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.
Clostridium dif f icile is the major cause of intestinal infections in hospitals. The major virulence factors are toxin A (TcdA) and toxin B (TcdB), which belong to the group of clostridial glucosylating toxins (CGT) that inactivate small GTPases. After a 24 h incubation period with TcdA or a glucosyltransferase-deficient mutant TcdA (gdTcdA), quantitative changes in the proteome of colonic cells (Caco-2) were analyzed using high-resolution LC−MS/MS and the SILAC technique. The changes in abundance of more than 5100 proteins were quantified. Nearly 800 toxin-responsive proteins were identified that were involved in cell cycle, cell structure, and adhesion as well as metabolic processes. Several proteins localized to mitochondria or involved in lipid metabolism were consistently of higher abundance after TcdA treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.