The display of enzymes on the surface of spores allows the rapid and very simple biotechnological production of immobilized enzymes. Here we describe the development of a Bacillus subtilis spore display platform and its application to produce hydrocarbons from lipids obtained from the oleaginous yeasts Yarrowia lipolytica, Cutaneotrichosporon oleaginosus as well as olive oil.Lipid hydrolysis was examined in a bienzymatic one-pot cascade using a commercially immobilized lipase (RO lipase) as well as spores with and without additional heterologous lipase expression. Decarboxylation of the released fatty acids was achieved displaying a photodecarboxylase (CvFAP) on the spore surface. Differences in composition of the formed hydrocarbons were observed depending on the lipids source. Using 3D printed lighting equipment titers of up to 64.0 ± 5.6 mg/L hydrocarbons were produced.
Despite the increasing relevance, ranging from academic research to industrial applications, only a limited number of nonconventional, oleaginous Yarrowia lipolytica strains are characterized in detail.Therefore, we analyzed three strains in regard to their metabolic and physiological properties and in respect to important characteristics of a production strains. A flow cytometry method was set up to evaluate their fitness in a rapid manner. By investigating different cultivation conditions and media compositions, similarities and differences between the distinct strain backgrounds could be derived.Especially sugar alcohol production, as well as a agglomeration of cells were found to be connected with growth at high temperatures. In addition, sugar alcohol production was independent of high substrate concentrations under these conditions. To investigate particular traits, including growth characteristics and metabolite concentrations, genomic analysis were performed. We found sequence variations for one third of the annotated proteins but no obvious link to all phenotypic features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.