Loss of immune function and increased hematopoietic disease are among the most clinically significant consequences of aging. Hematopoietic stem cells (HSCs) from mice lacking aryl hydrocarbon receptor (AhR) have high rates of cell division. Studies were designed to test the hypothesis that aging AhR-null allele (AhR-KO) mice develop premature HSC exhaustion, and changes leading to hematological disease. Compared to wild-type, aging AhR-KO mice showed a decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, and anemia. Analysis of bone marrow indicated increased numbers of stem/progenitor and lineage-committed cells, but decreased erythroid progenitors. There was also decreased self-renewal capacity of HSCs determined by competitive repopulation and serial transplantation. HSCs also showed increased levels of reactive oxygen species (ROS), Ki-67, and g-H2A.X, but decreased p16 Ink4a. Splenic cells from aging KO mice had abnormal expression of genes, including Gata-1, Sh2d3c, Gfi-1, p21, and c-myc, involved in trafficking and associated with leukemia. HSCs from AhR-KO mice had gene changes related to HSC maintenance and consistent with phenotype observed. The most prominent gene changes (overexpression of Srpk2, Creb1, Hes1, mtor, pdp1) have been associated with HSC hyperproliferation, leukemia, and accelerated aging. Pathway analyses also indicated an enrichment of genes associated with oxidative stress, acute myelogenous leukemia, aging, and heat shock response, and the b-catenin/Wnt pathways. These data indicate that loss of AhR and associated changes in multiple signaling pathways promote premature HSC exhaustion and development of a myeloproliferative disorder. They also implicate a critical role of the AhR in the regulation of HSCs.
Processes that regulate quiescence, self-renewal, and senescence of hematopoietic stem cells (HSCs) are not well understood. Due in part to the ability of xenobiotic ligands to have persistent effects on the immune system in experimental animals, there has been much work to define a physiological role of the aryl hydrocarbon receptor (AhR) and relationships to human disease. Persistent AhR activation by dioxin, a potent agonist, results in altered numbers and function of HSCs in mice. HSCs from AhR null-allele (KO) mice are hyperproliferative and have altered cell cycle. Aging KO mice show characteristics consistent with premature bone marrow exhaustion. We propose that the increased proliferation of HSCs lacking AhR expression or activity is a result of loss of quiescence, and as such, AhR normally acts as a negative regulator to curb excessive or unnecessary proliferation. Similarly, prolonged and/or inappropriate stimulation of AhR activity may compromise the ability of HSCs to sense environmental signals that allow these cells to balance quiescence, proliferation, migration, and differentiation. These data, and others, support a hypothesis that deregulation of AhR function has an important role in HSC regulation and in the etiology and/or progression of certain hematopoietic diseases, many of which are associated with aging.
Genetic factors contribute to the risk of thrombotic diseases. Recent genome wide association studies have identified genetic loci including SLC44A2 which may regulate thrombosis. Here we show that Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial energetics. We find that Slc44a2 null mice (Slc44a2(KO)) have increased bleeding times and delayed thrombosis compared to wild-type (Slc44a2(WT)) controls. Platelets from Slc44a2(KO) mice have impaired activation in response to thrombin. We discover that Slc44a2 mediates choline transport into mitochondria, where choline metabolism leads to an increase in mitochondrial oxygen consumption and ATP production. Platelets lacking Slc44a2 contain less ATP at rest, release less ATP when activated, and have an activation defect that can be rescued by exogenous ADP. Taken together, our data suggest that mitochondria require choline for maximum function, demonstrate the importance of mitochondrial metabolism to platelet activation, and reveal a mechanism by which Slc44a2 influences thrombosis.
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor belonging to the Per-Arnt-Sim (PAS) family of proteins. The AHR is involved in hematopoietic stem cell (HSC) functions including self-renewal, proliferation, quiescence, and differentiation. We hypothesize that AHR impacts HSC functions by influencing genes that have roles in HSC maintenance and function and that this may occur through regulation of bone marrow (BM) niche cells. We examined BM and niche cells harvested from 8-week-old AHR null-allele (KO) mice in which exon 3 was deleted in the Ahr gene and compared these data to cells from B6 control mice; young and old (10 months) animals were also compared. We report changes in HSCs and peripheral blood cells in mice lacking AHR. Serial transplantation assays revealed a significant increase in long term HSCs. There was a significant increase in mesenchymal stem cells constituting the endosteal BM niche. Gene expression analyses of HSCs revealed an increase in expression of genes involved in proliferation and maintenance of quiescence. Our studies infer that loss of AHR results in increased proliferation and self-renewal of long term HSCs, in part, by influencing the microenvironment in the niche regulating the balance between quiescence and proliferation in HSCs.
1. Atrial natriuretic factor is metabolized by neutral endopeptidase (atriopeptidase; EC 3.4.24.11) in vitro. Inhibitors of this enzyme have been reported to prolong the half-life of atrial natriuretic factor in vivo and to potentiate the renal and haemodynamic effects of exogenous atrial natriuretic factor. 2. (+/-)-Candoxatrilat, a selective neutral endopeptidase inhibitor, potentiated the natriuretic and diuretic response to volume loading in anaesthetized rats. Part of the response to volume loading and the potentiation by (+/-)-candoxatrilat was prevented by a polyclonal atrial natriuretic factor antiserum. The diuretic and natriuretic responses evoked by hydrochlorothiazide were not altered by the antiserum. 3. (+/-)-Candoxatrilat reduced systolic blood pressure of one-kidney deoxycorticosterone acetate-salt hypertensive rats for over 5 h. This response was abolished by pretreatment with atrial natriuretic factor antiserum. 4. These data demonstrate that the neutral endopeptidase inhibitor (+/-)-candoxatrilat has natriuretic/diuretic and antihypertensive effects in rodents, and that these effects are mediated via endogenous atrial natriuretic factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.