Application of native chemical ligation logic to the case of an N-terminal proline is described. Two approaches were studied. One involved incorporation of a 3R-substituted thiyl-proline derivative. Improved results were obtained from a 3R-substituted selenol function, incorporated in the context of an oxidized dimer.
Glycoproteins are an important class of naturally occurring biomolecules which play a pivotal role in many biological processes. They are biosynthesized as complex mixtures of glycoforms through post-translational protein glycosylation. This fact, together with the challenges associated with producing them in homogeneous form, has hampered detailed structure-function studies of glycoproteins as well as their full exploitation as potential therapeutic agents. By contrast, chemical synthesis offers the unique opportunity to gain access to homogeneous glycoprotein samples for rigorous biological evaluation. Herein, we review recent methods for the assembly of complex glycopeptides and glycoproteins and present several examples from our laboratory towards the total chemical synthesis of clinically relevant glycosylated proteins that have enabled synthetic access to full-length homogeneous glycoproteins.
Wie in freier Wildbahn: Die erste Totalsynthese des Wildtyp‐Glycoproteins Erythropoietin (siehe Bild) konnte abgeschlossen werden. Für das synthetisch gefaltete Protein wurde Erythropoietin‐Aktivität nachgewiesen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.