We have previously demonstrated that the venom of the scorpion Leiurus quinquestriatus blocks small-conductance Cl- channels, derived from epithelial cells, when applied to the cytoplasmic surface. We have now purified to near homogeneity, and characterized, the component responsible for this blocking activity. It is a small basic peptide of 4,070 Da. The primary amino acid structure shows considerable homology to a class of previously described putative short insectotoxins. A brief characterization of the kinetics of Cl- channel block as well as a demonstration of toxicity to arthropods is also presented.
We have characterized voltage-dependent sodium channels in growth cones (GCPs) isolated from fetal rat brain using saxitoxin and TTX binding as well as recordings from channels reconstituted into lipid bilayer membranes. Both high- and low-affinity binding sites are present in GCP membranes. However, the two binding sites are segregated largely or completely, with the high-affinity binding sites in the plasmalemma, and the low-affinity sites in an internal membrane compartment. Plasmalemmal insertion of these internal sites can be triggered by high-potassium depolarization and depends on a metalloendoprotease-requiring mechanism. These observations indicate that a precursor-product relationship exists between the internal and external sodium channels of the growth cone, and therefore suggest that channel externalization causes conversion of low-affinity to high-affinity saxitoxin receptors. This conversion may represent a step of channel capacitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.