Titanium and its alloys form a thin amorphous protective surface oxide when exposed to an oxygen environment. The properties of this oxide layer are thought to be responsible for titanium and its alloys biocompatibility, chemical inertness, and corrosion resistance. Surface oxide crystallinity and pore size are regarded to be two of the more important properties in establishing successful osseointegration. Anodization is an electrochemical method of surface modification used for colorization marking and improved bioactivity on orthopedic and dental titanium implants. Research on titanium anodization using sulphuric acid has been reported in the literature as being primarily conducted in molarity levels 3 M and less using either galvanostatic or potentiostatic methods. A wide range of pore diameters ranging from a few nanometers up to 10 μm have been shown to form in sulfuric acid electrolytes using the potentiostatic and galvanostatic methods. Nano sized pores have been shown to be beneficial for bone cell attachment and proliferation. The purpose of the present research was to investigate oxide crystallinity and pore formation during titanium anodization using a pulsed DC waveform in a series of sulfuric acid electrolytes ranging from 0.5 to 12 M. Anodizing titanium in increasing sulfuric acid molarities showed a trend of increasing transformations of the amorphous natural forming oxide to the crystalline phases of anatase and rutile. The pulsed DC waveform was shown to produce pores with a size range from ≤0.01 to 1 μm(2). The pore size distributions produced may be beneficial for bone cell attachment and proliferation.
Large orthopedic external fixation clamps and related components were evaluated for force, torque, and heating response when subjected to the strong electromagnetic fields of magnetic-resonance (MR) imaging devices. Forces induced by a 3-Tesla (T) MR scanner were compiled for newly designed nonmagnetic clamps and older clamps that contained ferromagnetic components. Heating trials were performed in a 1.5 and in a 3 T MR scanner with two assembled external fixation frames. Forces of the newly designed clamps were more than a factor 2 lower as the gravitational force on the device whereas, magnetic forces on the older devices showed over 10 times the force induced by earth acceleration of gravity. No torque effects could be found for the newly designed clamps. Temperature measurements at the tips of Schanz screws in the 1.5 T MR scanner showed a rise of 0.7 degrees C for a pelvic frame and of 2.1 degrees C for a diamond knee bridge frame when normalized to a specific absorption rate (SAR) of 2 W/kg. The normalized temperature increases in the 3 T MR scanner were 0.9 degrees C for the pelvic frame and 1.1 degrees C for the knee bridge frame. Large external fixation frames assembled with the newly designed clamps (390 Series Clamps), carbon fiber reinforced rods, and implant quality 316L stainless steel Schanz screws met prevailing force and torque limits when tested in a 3-T field, and demonstrated temperature increase that met IEC-60601 guidelines for extremities. The influence of frame-induced eddy currents on the risk of peripheral nerve stimulation was not investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.