The defect in host defense that makes the diabetic ketoacidotic (DKA) patient susceptible to mucormycosis has not been identified. Sera from 10 DKA patients and three normal volunteers were tested for their capacity to support the in vitro growth of a common etiologic agent of mucormycosis, Rhizopus oryzae. After equilibration with room air none of the normal or DKA sera, each of which was now extremely alkaline, supported growth of R. oryzae. When the sera were placed in a CO2 atmosphere that permitted simulation of the in vivo clinical pH (normal 7.40 and DKA 7.3-6.6), four of seven DKA sera supported profuse fungal growth. No growth occurred in normal serum. The three DKA sera that did not support fungal growth at pH less than or equal to 7.3 contained less iron (x = 13 micrograms/dl) than the four sera that supported profuse fungal growth (x = 69 micrograms/dl). Increasing the iron content of iron-poor DKA serum that did not support R. oryzae growth allowed profuse growth at acidotic conditions but not at pH greater than or equal to 7.4. Simulated acidotic conditions (pH 7.3-6.6) also decreased the iron-binding capacity of normal serum stepwise from 266 micrograms/dl to 0. Our data indicate that acidosis temporarily disrupts the capacity of transferrin to bind iron and suggest that this alteration abolishes an important host defense mechanism that permits growth of R. oryzae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.