Chemists' ability to synthesize structurally complex, high-value organic molecules from simple starting materials is limited by methods to selectively activate and functionalize strong alkyl C(sp) covalent bonds. Recent activity has focused on the activation of abundant C-O, C-N and C-C bonds via a mechanistic paradigm of oxidative addition of a low-valent, electron-rich transition metal. This approach typically employs nickel(0), rhodium(I), ruthenium(0) and iron catalysts under conditions finely tuned for specific, electronically activated substrates, sometimes assisted by chelating functional groups or ring strain. By adopting a redox-neutral strategy involving palladium(II)-catalysed C-H activation followed by β-heteroatom/carbon elimination, we describe here a catalytic method to activate alkyl C(sp)-oxygen, nitrogen, carbon, fluorine and sulfur bonds with high regioselectivity. Directed hydrofunctionalization of the resultant palladium(II)-bound alkene leads to formal functional group metathesis. The method is applied to amino acid upgrading with complete regioselectivity and moderate to high retention of enantiomeric excess. Low-strain heterocycles undergo strong-bond activation and substitution, giving ring-opened products.
A directed, regiocontrolled hydroamination of unactivated terminal and internal alkenes is reported. The reaction is catalyzed by palladium(II) acetate and is compatible with a variety of nitrogen nucleophiles. A removable bidentate directing group is used to control the regiochemistry, prevent β-hydride elimination, and stabilize the nucleopalladated intermediate, facilitating a protodepalladation event. This method affords highly functionalized γ-amino acids in good yields with high regioselectivity.
Reactions that forge carbon-carbon (C-C) bonds are the bedrock of organic synthesis, widely used across the chemical sciences. We report a transformation that enables C-C bonds to be constructed from two classes of commonly available starting materials, alkenes and carbon-hydrogen (C-H) bonds. The reaction employs a palladium(II) catalyst and utilizes a removable directing group to both control the regioselectivity of carbopalladation and enable subsequent protodepalladation. A wide range of alkenes and C-H nucleophiles, including 1,3-dicarbonyls, aryl carbonyls, and electron-rich aromatics, are viable reaction partners, allowing Michael-type reactivity to be expanded beyond α,β-unsaturated carbonyl compounds to unactivated alkenes. Applications of this transformation in drug diversification and natural product total synthesis are described. Stoichiometric studies support each of the proposed steps in the catalytic cycle.
Removable tridentate directing groups inspired by pincer ligands have been designed to stabilize otherwise kinetically and thermodynamically disfavored 6-membered alkyl palladacycle intermediates. This family of directing groups enables regioselective remote hydrocarbofunctionalization of several synthetically useful alkene-containing substrate classes, including 4-pentenoic acids, allylic alcohols, homoallyl amines, and bis-homoallylamines, under Pd(II) catalysis. In conjunction with previous findings, we demonstrate regiodivergent hydrofunctionalization of 3-butenoic acid derivatives to afford either Markovnikov or anti-Markovnikov addition products depending on directing group choice. Preliminary mechanistic and computational data are presented to support the proposed catalytic cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.