Commercial poultry abattoirs were evaluated to determine the efficacy of the multi-hurdle antimicrobial strategy employed to reduce the microbial load present on incoming broilers from the farm. As next generation sequencing (NGS) has been recently employed to characterize the poultry production system, this study utilized 16S High throughput sequencing (HTS) and quantitative plating data to profile the microbiota of chicken carcasses and determine the efficacy of the multi-hurdle antimicrobial system. Aerobic plate count (APC) and Enterobacteriaceae (EB) microbial counts were quantified from whole bird carcass rinsates (WBCR). The remaining rinsates underwent microbiome analysis using 16S rRNA gene fragments on an Illumina MiSeq and were analyzed by Quantitative Insights into Microbial Ecology (QIIME). The key stages of processing were determined to be at rehang, pre-chill, and post-chill as per the Salmonella Reduction Regulation (75 Fed. Reg. 27288–27294). The APC microbial data from rehang, pre-chill, and post-chill were mean log 4.63 CFU/mL, 3.21 CFU/mL, and 0.89 CFU/mL and EB counts were mean log 2.99 CFU/mL, 1.95 CFU/mL, and 0.35 CFU/mL. NGS of WBCR identified 222 Operational Taxonomic Units’ (OTU’s) of which only 23 OTU’s or 10% of the population was recovered post-chill. Microbiome data suggested a high relative abundance of Pseudomonas at post-chill. Additionally, Pseudomonas, Enterobacteriaceae, and Weeksellaceae Chryseobacterium have been identified as potential indicator organisms having been isolated from all processing abattoirs and sampling locations. This study provides insight into the microbiota of commercial broilers during poultry processing.
Fish acute toxicity tests are conducted as part of regulatory hazard identification and risk-assessment packages for industrial chemicals and plant protection products. The aim of these tests is to determine the concentration which would be lethal to 50% of the animals treated. These tests are therefore associated with suffering in the test animals, and Organisation for Economic Cooperation and Development test guideline 203 (fish, acute toxicity) studies are the most widely conducted regulatory vertebrate ecotoxicology tests for prospective chemical safety assessment. There is great scope to apply the 3Rs principles-the reduction, refinement, and replacement of animals-in this area of testing. An expert ecotoxicology working group, led by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research, including members from government, academia, and industry, reviewed global fish acute test data requirements for the major chemical sectors. The present study highlights ongoing initiatives and provides an overview of the key challenges and opportunities associated with replacing, reducing, and/or refining fish acute toxicity studies-without compromising environmental protection.
Post chill whole poultry carcasses from a commercial processing plant were stored in a processing combo at room temperature (70 °F/21 °C) for 54 h to mimic the scenario of temperature abuse before further processing. Temperature data were collected in 1-min intervals and averaged each hour by 9 temperature data loggers. Two linear regressions were developed for the combo and internal breast temperature and slopes were nearly identical. Microbial data was collected by performing whole bird carcass rinses that were enumerated for aerobic plate count (APC), Enterobacteriaceae, Escherichia coli, and total coliform. Samples were collected from the chiller chute at time zero for initial bacterial counts. Carcass sampling continued once the internal breast temperature achieved 45 °F (7 °C 10 h) and continued every 2 h until the final internal breast temperature was 63 °F (17 °C 54 h). Linear regressions were developed for the first 26 h, which exhibited no statistically significant growth except for Enterobacteriaceae. A 2nd linear regression (28 to 54 h) exhibited significant growth for all analyses. Overall, APC increased from a log(10) colony forming unit (CFU)/mL count of 2.86 to 7.02, Enterobacteriaceae increased from 0.66 to 6.64, coliform increased from 0.72 to 4.81, and E. coli increased from 0.53 to 4.45. Denaturing gradient gel electrophoresis was performed to detect changes in the bacterial populations, which indicated 95% similarity within sampled groups, but the overall percent similarity among samples collected over 54 h was 8%. From the data, microbial growth demonstrates a period of 26 h for minimal growth; therefore, the product could be further processed rather than designated as waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.