This study followed the progression of lipolysis in Emmental cheese by quantifying the concentrations of individual free fatty acids (FFA) released during ripening in each of the different rooms: 12 days at 12 degrees C, 28 days at 21 degrees C, and 8 days at 4 degrees C. Lipolysis, which corresponded to 1.56% of fat, mainly occurred in the 21 and 4 degrees C rooms, with 68 and 16.5% of total FFA, respectively. The nonselectivity of lipolytic enzymes was evidenced: all fatty acids were released with level of > or =1%. Differential scanning calorimetry experiments showed that the thermal properties of cheese were affected by (i) lipolysis of fat, that is, the monoacylglycerols, diacylglycerols, and FFA that may be localized at the fat/whey interface, and/or by (ii) hydrolysis of high-melting-point triacylglycerols constituted mainly by long-chain saturated fatty acids (e.g., palmitic acid). Analysis of the cheese microstructure was performed using confocal laser scanning microscopy. Fat globules were mainly disrupted after pressing of curd grains, leading to the release of the milk fat globule membrane (MFGM); fat inclusions were surrounded by pockets of whey, delimited by casein strands. Moreover, colonies of bacteria were preferentially localized in situ at the fat/protein interface. This study showed that both the localization of bacteria and the supramolecular organization of fat which was not protected by the MFGM can help the accessibility of milk fat to lipolytic enzymes and then contribute to the quality of cheese.
Abstract. Simultaneous measurements of the oxides of hydrogen and nitrogen made during the NASA Subsonic Assessment, Ozone and Nitrogen Oxide Experiment (SONEX) afforded an opportunity to study the coupling between these two important families throughout the free troposphere and lowermost stratosphere. Moreover, the suite of measurements made during the campaign was unprecedented in its completeness, thus providing a uniquely detailed picture of the radical photochemistry that drives oxidation and ozone production in this part of the atmosphere. On average, observed hydrogen oxides (HOx = OH + HO2) agree well with both instantaneous and diel steady-state models; however, there is a persistent deviation of the observations that correlates with the abundance of nitrogen oxides (NOx = NO + NO2) in the sampled air mass. Specifically, the observed HO• tends to exceed the model predictions in the presence of high NO• concentrations, by as much as a factor of 5 (>500 pptv NOx), and is sometimes as little as half that expected by steady state at lower NOj levels. While many possibilities for these discrepancies are discussed, it is argued that an instrumental artifact is not probable and that the discrepancy may bespeak a shortcoming of our understanding of HO• chemistry. The consistently elevated HO• in the presence of elevated NOx leads directly to greater ozone production than expected, thereby extending the NOx-limited regime of the upper troposphere. These results could thus have bearing on the predicted impacts of increasing NO• emissions into this region of the atmosphere from, for example, the growth of global air traffic.
Fat-reduced cheeses often suffer from undesirable texture, flavor, and cooking properties. Exopolysaccharides (EPS) produced by starter strains have been proposed as a mechanism to increase yield and to improve the texture and cooking properties of reduced-fat cheeses. The objective of this work was to assess the influence of an exopolysaccharide on the yield, texture, cooking properties, and quality of half-fat Cheddar cheese. Two pilot-scale half-fat Cheddar cheeses were manufactured using single starters of an isogenic strain of Lactococcus lactis ssp. cremoris (DPC6532 and DPC6533) that differed in their ability to produce exopolysaccharide. Consequently, any differences detected between the cheeses were attributed to the presence of the exopolysaccharide. The results indicated that cheeses made with the exopolysaccharide-producing starter had an 8.17% increase in actual cheese yield (per 100 kg of milk), a 9.49% increase in moisture content, increase in water activity and water desorption rate at relative humidities
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.