It has recently been demonstrated that inference methods based on genealogical processes with recombination can reveal past population history in unprecedented detail. However, these methods scale poorly with sample size, which limits resolution in the recent past, and they require phased genomes, which contain switch errors that can catastrophically distort the inferred history. Here, we present SMC++, a new statistical tool capable of analyzing orders of magnitude more samples than existing methods, while requiring only unphased genomes (its results are independent of phasing). SMC++ can jointly infer population size histories and split times in diverged populations, and it employs a novel spline regularization scheme that greatly reduces estimation error. We apply SMC++ to analyze sequence data from over a thousand human genomes in Africa and Eurasia, hundreds of genomes from a Drosophila population in Africa, and tens of genomes from zebra finch and long-tailed finch populations in Australia.
Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.
30Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented private genetic variation in 35 southern and central Africa and in Oceania and the Americas, but an absence of fixed, private variants between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the last 10,000 years, a potentially major population growth episode after the peopling of the Americas, and a contrast between single Neanderthal but multiple 40Denisovan source populations contributing to present-day human populations. We also demonstrate benefits to the study of population relationships of genome sequences over ascertained array genotypes. These genome sequences are freely available as a resource with no access or analysis restrictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.