BACKGROUND
Intravascular ultrasound imaging was performed in 27 patients after coronary balloon angioplasty to quantify the lumen and atheroma cross-sectional areas.
METHODS AND RESULTS
A 20-MHz ultrasound catheter was inserted through a 1.6-mm plastic introducer sheath across the dilated area to obtain real-time images at 30 times/sec. The ultrasound images distinguished the lumen from atheroma, calcification, and the muscular media. The presence of dissection between the media and the atheroma was well visualized. These observations of tissue characterization were compared with an in vitro study of 20 human atherosclerotic artery segments that correlated the ultrasound images to histological preparations. The results indicate that high-quality intravascular ultrasound images under controlled in vitro conditions can provide accurate microanatomic information about the histological characteristics of atherosclerotic plaques. Similar quality cross-sectional ultrasound images were also obtained in human coronary arteries in vivo. Quantitative analysis of the ultrasound images from the clinical studies revealed that the mean cross-sectional lumen area after balloon angioplasty was 5.0 +/- 2.0 mm2. The mean residual atheroma area at the level of the prior dilatation was 8.7 +/- 3.4 mm2, which corresponded to 63% of the available arterial cross-sectional area. At the segments of the coronary artery that appeared angiographically normal, the ultrasound images demonstrated the presence of atheroma involving 4.7 +/- 3.2 mm2, which was a mean of 35 +/- 23% of the available area bounded by the media.
CONCLUSIONS
Intravascular ultrasound appears to be more sensitive than angiography for demonstrating the presence and extent of atherosclerosis and arterial calcification. Intracoronary imaging after balloon angioplasty reveals that a significant amount of atheroma is still present, which may partly explain why the incidence of restenosis is high after percutaneous transluminal coronary angioplasty.
A prototype ultrasound imaging catheter was evaluated in vitro using 17 human atherosclerotic artery segments before and after balloon dilatation angioplasty. culty in visualizing the coronary tree with a transcutaneous approach.4-6 Recent work has shown that it is feasible to image arteries in cross section using a catheter-mounted ultrasound transducer that generates arterial images from inside the artery lumen.7-9 The purpose of this study was twofold: first, to assess the ability of a newly developed intravascular ultrasound catheter to generate crossSee p 1091 sectional images of human atherosclerotic artery segments in vitro; and second, to visualize the effects of balloon dilatation, as well as measure the luminal cross-sectional area before and after balloon dilatation. Methods A prototype ultrasound imaging catheter (Intertherapy Inc., Costa Mesa, California) was used in this study. A single 20-MHz ultrasound transducer was located in the distal end of a 1.2-mm diameter catheter. The transducer was oriented so that the ultrasound energy was transmitted against a mirror and deflected perpendicular to the long axis of the catheter (Figure 1)
Recanalization of completely occluded superficial femoral or popliteal arteries was attempted in 18 patients with use of an Argon laser-mediated thermal probe. The length of the occluded segments varied between 0.5 and 26.0 cm, but 67% of the occlusions were greater than 9 cm long. The initial success rate was 67%. Arterial perforation occurred in six patients but was not associated with major complications. To study the mechanism of the laser-mediated thermal probe, thermal recanalization was performed on 11 human arterial segments in vitro obtained after amputation, and mechanical recanalization was performed in vitro in 10 human peripheral arteries with use of a guide wire and catheter technique. An additional four arteries were studied with the laser probe as a non-heated mechanical device. Both the mechanical and thermal devices appear to follow a similar pathway through a complete obstruction. These studies suggest that the thermal probe burns through soft fibrous tissue but is mechanically deflected away from hard fibrocalcific plaque. The probe then advances along the plane between the intimal plaque and the media for a variable length before perforating through the adventitia. These observations suggest that the major mechanism of thermal probe recanalization may be a mechanical process. It appears that thermal probe devices do not inherently seek the true lumen of an occluded artery and that better guidance systems need to be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.