Schizophrenia is a common disorder characterized by psychotic symptoms; diagnostic criteria have been established. Family, twin and adoption studies suggest that both genetic and environmental factors influence susceptibility (heritability is approximately 71%; ref. 2), however, little is known about the aetiology of schizophrenia. Clinical and family studies suggest aetiological heterogeneity. Previously, we reported that regions on chromosomes 22, 3 and 8 may be associated with susceptibility to schizophrenia, and collaborations provided some support for regions on chromosomes 8 and 22 (refs 9-13). We present here a genome-wide scan for schizophrenia susceptibility loci (SSL) using 452 microsatellite markers on 54 multiplex pedigrees. Non-parametric linkage (NPL) analysis provided significant evidence for an SSL on chromosome 13q32 (NPL score=4.18; P=0.00002), and suggestive evidence for another SSL on chromosome 8p21-22 (NPL=3.64; P=0.0001). Parametric linkage analysis provided additional support for these SSL. Linkage evidence at chromosome 8 is weaker than that at chromosome 13, so it is more probable that chromosome 8 may be a false positive linkage. Additional putative SSL were noted on chromosomes 14q13 (NPL=2.57; P=0.005), 7q11 (NPL=2.50, P=0.007) and 22q11 (NPL=2.42, P=0.009). Verification of suggestive SSL on chromosomes 13q and 8p was attempted in a follow-up sample of 51 multiplex pedigrees. This analysis confirmed the SSL in 13q14-q33 (NPL=2.36, P=0.007) and supported the SSL in 8p22-p21 (NPL=1.95, P=0.023).
OBJECTIVE Schizophrenia (SZ) and Bipolar Disorder (BD) are associated with multidimensional disability. This study examined differential predictors of functional deficits between the disorders. METHODS Community dwelling individuals with SZ (N=161) or BD (N=130) were administered neuropsychological tests, symptom measures, performance-based social and adaptive (i.e., everyday-living skills) functional competence measures, and rated on domains of real-world functioning: 1) Community and Household activities, 2) Work skills, and 3) Interpersonal relationships. We used confirmatory path analysis to find the best fitting models to examine the direct and indirect (as mediated by competence) prediction of the three domains of real-world functioning. RESULTS In all models for both groups, neurocognition’s relationship with outcomes was largely mediated by competence. Symptoms were negatively associated with outcomes but unassociated with competence, with the exception of depression, which was a direct and mediated (through social competence) predictor in BD. In both groups, neurocognition was related to Activities directly and through a mediated relationship with adaptive competence. Work Skills were directly and indirectly (through mediation with social competence) predicted by neurocognition in SZ and entirely mediated by adaptive and social competence in BD. Neurocognition was associated with Interpersonal Relationships directly in the SZ group, and mediated by social competence in both groups. CONCLUSIONS Although there was greater disability in SZ, neurocognition predicted worse functioning in all outcome domains in both disorders. Our study supports the shared role of neurocognition in BD and SZ in producing disability, with predictive differences between disorders observed in domain-specific effects of symptoms and social and adaptive competence.
Bipolar, schizophrenia, and schizoaffective disorders are common, highly heritable psychiatric disorders, for which familial coaggregation, as well as epidemiological and genetic evidence, suggests overlapping etiologies. No definitive susceptibility genes have yet been identified for any of these disorders. Genetic heterogeneity, combined with phenotypic imprecision and poor marker coverage, has contributed to the difficulty in defining risk variants. We focused on families of Ashkenazi Jewish descent, to reduce genetic heterogeneity, and, as a precursor to genomewide association studies, we undertook a single-nucleotide polymorphism (SNP) genotyping screen of 64 candidate genes (440 SNPs) chosen on the basis of previous linkage or of association and/or biological relevance. We genotyped an average of 6.9 SNPs per gene, with an average density of 1 SNP per 11.9 kb in 323 bipolar I disorder and 274 schizophrenia or schizoaffective Ashkenazi case-parent trios. Using single-SNP and haplotype-based transmission/disequilibrium tests, we ranked genes on the basis of strength of association (P<.01). Six genes (DAO, GRM3, GRM4, GRIN2B, IL2RB, and TUBA8) met this criterion for bipolar I disorder; only DAO has been previously associated with bipolar disorder. Six genes (RGS4, SCA1, GRM4, DPYSL2, NOS1, and GRID1) met this criterion for schizophrenia or schizoaffective disorder; five replicate previous associations, and one, GRID1, shows a novel association with schizophrenia. In addition, six genes (DPYSL2, DTNBP1, G30/G72, GRID1, GRM4, and NOS1) showed overlapping suggestive evidence of association in both disorders. These results may help to prioritize candidate genes for future study from among the many suspected/proposed for schizophrenia and bipolar disorders. They provide further support for shared genetic susceptibility between these two disorders that involve glutamate-signaling pathways.
Schizophrenia (SZ) is a severe psychiatric illness that affects approximately 1% of the population and has a strong genetic underpinning. Recently, genome-wide analysis of copy-number variation (CNV) has implicated rare and de novo events as important in SZ. Here, we report a genome-wide analysis of 245 SZ cases and 490 controls, all of Ashkenazi Jewish descent. Because many studies have found an excess burden of large, rare deletions in cases, we limited our analysis to deletions over 500 kb in size. We observed seven large, rare deletions in cases, with 57% of these being de novo. We focused on one 836 kb de novo deletion at chromosome 3q29 that falls within a 1.3-1.6 Mb deletion previously identified in children with intellectual disability (ID) and autism, because increasing evidence suggests an overlap of specific rare copy-number variants (CNVs) between autism and SZ. By combining our data with prior CNV studies of SZ and analysis of the data of the Genetic Association Information Network (GAIN), we identified six 3q29 deletions among 7545 schizophrenic subjects and one among 39,748 controls, resulting in a statistically significant association with SZ (p = 0.02) and an odds ratio estimate of 17 (95% confidence interval: 1.36-1198.4). Moreover, this 3q29 deletion region contains two linkage peaks from prior SZ family studies, and the minimal deletion interval implicates 20 annotated genes, including PAK2 and DLG1, both paralogous to X-linked ID genes and now strong candidates for SZ susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.