We report on a first census of Galactic black hole X-ray binary (BHXRB) properties with the second data release (DR2) of Gaia, focusing on dynamically confirmed and strong candidate black hole transients. DR2 provides five-parameter astrometric solutions including position, parallax and proper motion for 11 of a sample of 24 systems. Distance estimates are tested with parallax inversion as well as Bayesian inference. We derive an empirically motivated characteristic scale length of L = 2.17 ± 0.12 kpc for this BHXRB population to infer distances based upon an exponentially decreasing space density prior. Geometric DR2 parallaxes provide new, independent distance estimates, but the faintness of this population in quiescence results in relatively large fractional distance uncertainties. Despite this, DR2 estimates generally agree with literature distances. The most discrepant case is BW Cir, for which detailed studies of the donor star have suggested a distant location at ∼ > 25 kpc. A large DR2 measured parallax and relatively high proper motion instead prefer significantly smaller distances, suggesting that the source may instead be amongst the nearest of XRBs. However, both distances create problems for interpretation of the source, and follow-up data are required to resolve its true nature. DR2 also provides a first distance estimate to one source, MAXI J1820+070, and novel proper motion estimates for 7 sources. Peculiar velocities relative to Galactic rotation exceed ≈ 50 km s −1 for the bulk of the sample, with a median system kinetic energy of peculiar motion of ∼ 5 × 10 47 erg. BW Cir could be a new high-velocity BHXRB if its astrometry is confirmed. A putative anti-correlation between peculiar velocity and black hole mass is found, as expected in mass-dependent BH kick formation channels, but this trend remains weak in the DR2 data.
We report on simultaneous sub-second optical and X-ray timing observations of the low-mass X-ray binary black hole candidate MAXI J1820+070. The bright 2018 outburst rise allowed simultaneous photometry in five optical bands (ugrizs) with HiPERCAM/GTC (Optical) at frame rates over 100 Hz, together with NICER/ISS observations (X-rays). Intense (factor of 2) red flaring activity in the optical is seen over a broad range of time-scales down to ∼10 ms. Cross-correlating the bands reveals a prominent anticorrelation on time-scales of ∼seconds, and a narrow sub-second correlation at a lag of ≈ +165 ms (optical lagging X-rays). This lag increases with optical wavelength, and is approximately constant over Fourier frequencies of ∼0.3–10 Hz. These features are consistent with an origin in the inner accretion flow and jet base within ∼5000 Gravitational radii. An additional ∼+5 s lag feature may be ascribable to disc reprocessing. MAXI J1820+070 is the third black hole transient to display a clear ∼0.1 s optical lag, which may be common feature in such objects. The sub-second lag variation with wavelength is novel, and may allow constraints on internal shock jet stratification models.
We present multi-wavelength fast timing observations of the black hole X-ray binary MAXI J1820+070 (ASASSN-18ey), taken with the Karl G. Jansky Very Large Array (VLA), Atacama Large Millimeter/Sub-Millimeter Array (ALMA), Very Large Telescope (VLT), New Technology Telescope (NTT), Neutron Star Interior Composition Explorer (NICER), and XMM-Newton. Our data set simultaneously samples ten different electromagnetic bands (radio – X-ray) over a 7-hour period during the hard state of the 2018–2019 outburst. The emission we observe is highly variable, displaying multiple rapid flaring episodes. To characterize the variability properties in our data, we implemented a combination of cross-correlation and Fourier analyses. We find that the emission is highly correlated between different bands, measuring time-lags ranging from hundreds of milliseconds between the X-ray/optical bands to minutes between the radio/sub-mm bands. Our Fourier analysis also revealed, for the first time in a black hole X-ray binary, an evolving power spectral shape with electromagnetic frequency. Through modelling these variability properties, we find that MAXI J1820+070 launches a highly relativistic ($\Gamma =6.81^{+1.06}_{-1.15}$) and confined ($\phi =0.45^{+0.13}_{-0.11}$ deg) jet, which is carrying a significant amount of power away from the system (equivalent to ∼0.6 L1 − 100keV). We additionally place constraints on the jet composition and magnetic field strength in the innermost jet base region. Overall, this work demonstrates that time-domain analysis is a powerful diagnostic tool for probing jet physics, where we can accurately measure jet properties with time-domain measurements alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.