The combination of measurement of the serum PSA concentration and rectal examination, with ultrasonography performed in patients with abnormal findings, provides a better method of detecting prostate cancer than rectal examination alone.
Mutations in the mtDNA have been found to fulfill all of the criteria expected for pathogenic mutations causing prostate cancer. Focusing on the cytochrome oxidase subunit I (COI) gene, we found that 11-12% of all prostate cancer patients harbored COI mutations that altered conserved amino acids (mean conservation index ؍ 83%), whereas <2% of no-cancer controls and 7.8% of the general population had COI mutations, the latter altering less conserved amino acids (conservation index ؍ 71%). Four conserved prostate cancer COI mutations were found in multiple independent patients on different mtDNA backgrounds. Three other tumors contained heteroplasmic COI mutations, one of which created a stop codon. This latter tumor also contained a germ-line ATP6 mutation. Thus, both germ-line and somatic mtDNA mutations contribute to prostate cancer. Many tumors have been found to produce increased reactive oxygen species (ROS), and mtDNA mutations that inhibit oxidative phosphorylation can increase ROS production and thus contribute to tumorigenicity. To determine whether mutant tumors had increased ROS and tumor growth rates, we introduced the pathogenic mtDNA ATP6 T8993G mutation into the PC3 prostate cancer cell line through cybrid transfer and tested for tumor growth in nude mice. The resulting mutant (T8993G) cybrids were found to generate tumors that were 7 times larger than the wild-type (T8993T) cybrids, whereas the wild-type cybrids barely grew in the mice. The mutant tumors also generated significantly more ROS. Therefore, mtDNA mutations do play an important role in the etiology of prostate cancer.cybrid ͉ oxidative phosphorylation ͉ inherited predisposition
Bioconjugated quantum dots (QDs) provide a new class of biological labels for evaluating biomolecular signatures (biomarkers) on intact cells and tissue specimens. In particular, the use of multicolor QD probes in immunohistochemistry is considered one of the most important and clinically relevant applications. At present, however, clinical applications of QD-based immunohistochemistry have achieved only limited success. A major bottleneck is the lack of robust protocols to define the key parameters and steps. Here, we describe our recent experience, preliminary results and detailed protocols for QD-antibody conjugation, tissue specimen preparation, multicolor QD staining, image processing and biomarker quantification. The results demonstrate that bioconjugated QDs can be used for multiplexed profiling of molecular biomarkers, and ultimately for correlation with disease progression and response to therapy. In general, QD bioconjugation is completed within 1 day, and multiplexed molecular profiling takes 1-3 days depending on the number of biomarkers and QD probes used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.