Ischemic strokes occur when a major cerebral artery or its branches are occluded, resulting in activation of inflammatory processes that cause secondary tissue injury, breakdown of the blood–brain barrier, edema or hemorrhage. Treatments that inhibit inflammatory processes may thus be highly beneficial. A key regulator of the inflammatory process is the nuclear factor kappa B (NF-κB) pathway. In its active form, NF-κB regulates expression of proinflammatory and proapoptotic genes. The molecules that interact with NF-κB, and the subunits that compose NF-κB itself, represent therapeutic targets that can be modulated to decrease inflammation. This review focuses on our current understanding of the NF-κB pathway and the potential benefits of inhibiting NF-κB in ischemia-reperfusion injury of the brain.
Preeclampsia is a hypertensive disorder of pregnancy that causes significant acute and long-term risk to the mother and the baby. The multifaceted maternal syndrome is driven by overproduction of circulating anti-angiogenic factors, widespread inflammation, and endothelial dysfunction. Nuclear factor-κB (NF-κB) is a transcription factor that plays a central role in the inflammatory response. Its activity is increased in the preeclamptic placenta, and it promotes the systemic endothelial dysfunction present in preeclampsia. There is an acute need for new therapeutics targeted to the causative pathways of preeclampsia. Our group has developed a drug delivery system based on the bioengineered protein ELP (elastin-like polypeptide) that is capable of stabilizing therapeutics in the maternal circulation and preventing their placental transfer. Here we used the ELP carrier system to deliver a peptide known to inhibit the NF-κB pathway. This polypeptide, containing a cell-penetrating peptide and an NF-κB inhibitory peptide derived from the p50 nuclear localization sequence (abbreviated SynB1-ELP-p50i), blocked NF-κB activation and prevented TNF-α (tumor necrosis factor alpha)–induced endothelin production in vitro. Fusion of the p50i peptide to the SynB1-ELP carrier slowed its plasma clearance and prevented its placental transfer in pregnant rats, resulting in increased deposition in the maternal kidney, liver, and placenta relative to the free peptide. When administered in a rat model of placental ischemia, SynB1-ELP-p50i partially ameliorated placental ischemia-induced hypertension and reduced placental TNF-α levels with no signs of toxicity. These data support the continued development of ELP-delivered NF-κB inhibitors as maternally sequestered anti-inflammatory agents for preeclampsia therapy.
Inflammatory processes are activated following ischemic stroke that lead to increased tissue damage for weeks following the ischemic insult, but there are no approved therapies that target this inflammation‐induced secondary injury. Here, we report that SynB1‐ELP‐p50i, a novel protein inhibitor of the nuclear factor kappa B (NF‐κB) inflammatory cascade bound to the drug carrier elastin‐like polypeptide (ELP), decreases NF‐κB induced inflammatory cytokine production in cultured macrophages, crosses the plasma membrane and accumulates in the cytoplasm of both neurons and microglia in vitro, and accumulates at the infarct site where the blood–brain barrier (BBB) is compromised following middle cerebral artery occlusion (MCAO) in rats. Additionally, SynB1‐ELP‐p50i treatment reduces infarct volume by 11.86% compared to saline‐treated controls 24 h following MCAO. Longitudinally, SynB1‐ELP‐p50i treatment improves survival for 14 days following stroke with no effects of toxicity or peripheral organ dysfunction. These results show high potential for ELP‐delivered biologics for therapy of ischemic stroke and other central nervous system disorders and further support targeting inflammation in ischemic stroke.
Preeclampsia is characterized by the development of elevated blood pressure during the second and third trimesters of pregnancy that is accompanied by end organ dysfunction. The pathogenesis of preeclampsia is multifactorial but is commonly characterized by endothelial dysfunction and the overproduction of antiangiogenic factors, including the soluble VEGF (vascular endothelial growth factor) receptor sFlt-1 (soluble Fms-like tyrosine kinase receptor 1). Previously, administration of exogenous VEGF-A, bound to a carrier protein called ELP (elastin-like polypeptide), significantly reduced free sFlt-1 levels and attenuated the hypertensive response in a rodent model of preeclampsia. However, VEGF-A administration induces multifactorial effects mediated through its direct activation of the Flk-1 receptor. In response to this, we developed a therapeutic chimera using ELP bound to VEGF-B, a VEGF isoform that binds to sFlt-1 but not to Flk-1. The purpose of this study was to evaluate the in vitro activity and pharmacological properties of ELP-VEGF-B and to test its efficacy in the reduced uterine perfusion pressure rat model of placental ischemia. ELP-VEGF-B was less potent than ELP-VEGF-A in stimulation of endothelial cell proliferation and matrix invasion, indicating that it is a weaker angiogenic driver. However, after repeated subcutaneous administration in pregnant rats, ELP-VEGF-B was maternally sequestered and reduced blood pressure when compared with saline treated animals following induction of placental ischemia (123.38±11.4 versus 139.98±10.56 mm Hg, P =0.0129). Blood pressure reduction was associated with a restoration of the angiogenic capacity of plasma from rats treated with ELP-VEGF-B. ELP-VEGF-B is a nonangiogenic, maternally sequestered protein with potential efficacy for treatment of preeclampsia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.