The electricity potential in Ghana has become a huge challenge to the nation, which increases the country's economic growth and reduces Nation's development. The study highlights the trends on the power grid of the energy potential for the past ten years' impact regarding the directions on the power grid, and to determine the economic potential viabilities couples with the sustainability of renewable energy sources in Ghana. The study relied on substantial reviewed literature and revealed that Ghana's energy generation has passed through multiple stages, started from diesel generator supply systems owned by industries and factories to hydroelectricity, thermal power electricity powered by natural gas or crude oil, and solar electricity. The study showed that as of December 2017, Ghana had installed a total capacity of 4398.6 MW comprising Hydro, Thermal, and Solar Plants. Out of the full power, Hydropower generates 1580 MW representing 35.9%, Thermal generates 2796 MW, which also represents 63.6%, while 22.6 MW capacity represents 0.5%. The Long-range Energy Alternatives Planning system (LEAP) tools were employed to consider three different scenarios: energy demand, cost-benefit, and carbon limitation. 2018 was considered as the base year and 2048 as the end year. The results show that 17,800 GWh was estimated as energy demand at base year while 44,000 GWh at end year of 7% annual growth rate. The share of renewable power plants was almost zero at the current account. The share of solar thermal plants may reach 90% due to direct cost and externalities. The study adopted one-hundred-year direct GWP at the point of emissions to compare the Mitigation (MITG) and Reference (REF) scenarios. The model indicated 1.3 Million tons of CO 2 saving and 4.0 billion U.S. dollars saving with a 5% discount rate in power generation until 2048, if only the country could afford to develop its generation system with the high deployment of RETs, additional benefits in the form of a sustainable safety environment and less emission carbon would be achieved in the next 30 years.
Three energy storage systems, namely Nickel Zinc, Nickel Metal Hydride and Lithium ion batteries were simulated on ADVISOR (Advanced vehicle simulator) to determine their impact on fuel economy. ADVISOR, a drivetrain analysis tool developed in MATLAB/Simulink for comparing fuel economy and emissions performance and designed by the National Renewable Energy Laboratory by Ford, GM, and Chrysler was used for the simulations. In choosing the batteries for simulations, only the latest technological advanced batteries of NiZn, Li ion and NiMH were used. The results showed that NiZn battery influence in fuel economy and system efficiency far exceeds the other batteries especially for the combined Powertrain. While a lithium ion battery is seen to be well suited for Parallel and Series powertrains at higher speeds, average values for all drive cycle singles out NiZn as a better performing battery. NiMH showed the worst performance. This confirms NiMH, which is the predominant energy storage system today in the HEV industry, is deficient in advancing the growth of HEV’s.Keywords: power trains; hybrid energy storage; hybrid electric vehicle; combined hybrid; parallel hybrid
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.