Matrix sequestration of matrix metalloproteinases may be important for the facilitation of remodelling events and the migration of cells through the extracellular matrix. Using an ELISA technique we studied the ability of pro and active forms of gelatinases A and B (GLA and GLB) to bind to matrix components and the contribution made by the different enzyme domains. Pro and active forms of GLA and GLB bound to type-I and type-IV collagens, gelatin and laminin films. Binding to collagens occurred exclusively via the N-terminal portion of the molecule in both of the gelatinases; deletion of the fibronectin-like domain in GLA abolished binding. Fibronectin was shown to compete with GLA, confirming that binding occurs through this domain. GLA and GLB competed for binding to collagen type I, whereas collagenase and stromelysin bound to different sites and could be co-localized with the gelatinases. We conclude that gelatinases have different binding specificities from those previously documented for stromelysin and collagenase, which bind through their C-terminal domains to collagen fibrils.
We present first results from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), a multiconfiguration EVLA study of the neutral gas contents and dynamics of galaxies with HI masses in the 10 6 -10 7 M ⊙ range detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We describe the survey motivation and concept demonstration using VLA imaging of 6 low-mass galaxies detected in early ALFALFA data products. We then describe the primary scientific goals of SHIELD and present preliminary EVLA and WIYN 3.5m imaging of the 12 SHIELD galaxies. With only a few exceptions, the neutral gas distributions of these extremely low-mass galaxies are centrally concentrated. In only 1 system have we detected HI column densities higher than 10 21 cm −2 . Despite this, the stellar populations of all of these systems are dominated by blue stars. Further, we find ongoing star formation as traced by Hα emission in 10 of the 11 galaxies with Hα imaging obtained to date. Taken together these results suggest that extremely low-mass galaxies are forming stars in conditions different from those found in more massive systems. While detailed dynamical analysis requires the completion of data acquisition, the most well-resolved system is amenable to meaningful position-velocity analysis. For AGC 749237, we find well-ordered rotation of 30 km s −1 at ∼ 40 ′′ distance from the dynamical center. At the adopted distance of 3.2 Mpc, this implies the presence of a > ∼ 1 × 10 8 M ⊙ dark matter halo and a baryon fraction < ∼ 0.1.
SUMMARY Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen worldwide. Infection can result in serious reproductive pathologies, including pelvic inflammatory disease, ectopic pregnancy, and infertility, in women. However, the processes that result in these reproductive pathologies have not been well defined. Here we review the evidence for the human disease burden of these chlamydial reproductive pathologies. We then review human-based evidence that links Chlamydia with reproductive pathologies in women. We present data supporting the idea that host, immunological, epidemiological, and pathogen factors may all contribute to the development of infertility. Specifically, we review the existing evidence that host and pathogen genotypes, host hormone status, age of sexual debut, sexual behavior, coinfections, and repeat infections are all likely to be contributory factors in development of infertility. Pathogen factors such as infectious burden, treatment failure, and tissue tropisms or ascension capacity are also potential contributory factors. We present four possible processes of pathology development and how these processes are supported by the published data. We highlight the limitations of the evidence and propose future studies that could improve our understanding of how chlamydial infertility in women occurs and possible future interventions to reduce this disease burden.
There is a need for further exploration of the endometrial microbiota, and how the microbiota members or profile interplays with fertility or assisted reproductive technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.