The effect of ketamine on myocardial contractile force was examined in rabbit papillary muscles in order to determine the underlying mechanism of action of the anesthetic. Ketamine HCl (20 and 40 mg/L) inhibited rested-state contractions that are dependent on the transsarcolemmal influx of Ca2+ for activation and reduced the upstroke velocity of the slow action potential, which reflects Ca2+ influx through the slow Ca2+ channel. On the other hand, ketamine had a relatively small effect on potentiated-state contractions and no effect on rapid cooling induced contractures, both of which are activated by the release of Ca2+ stored in the sarcoplasmic reticulum. These results suggest that ketamine inhibition of transsarcolemmal Ca2+ influx plays a major role in the negative inotropic action of the anesthetic.
Epidural anesthesia results in a narrowed margin of safety for oxygen delivery to the brain and predisposes subjects to ventilatory arrest during hypoxia. This results from the combined effects of decreased blood oxygen content, which is due to decreased inspired oxygen concentration superimposed on circulatory depression due to neural blockade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.