SUMMARYThe steadily rising demand for multimedia and data services, the falling cost and omnipresence of Ethernet and the maturity of passive optical networks (PON) technology, promise to radically change the landscape in the local loop. The heart of a gigabit PON system (recently standardized by FSAN/ITU) is the medium access controller (MAC), which arbitrates access to the upstream link among users with fluctuating traffic demands and effects the multiplexing and concentration policy. At the same time, it has to safeguard the service quality and enforce the parameters agreed in the service level agreements (SLAs) between the users and the service provider. In this paper, a MAC protocol designed to serve any mix of services according to their quality of service (QoS) needs, employing four priority levels along with a high number of logically separate data queues is presented. The architecture and implementation in hardware of a MAC algorithm capable of allocating bandwidth down to a resolution of a byte with QoS differentiation is the focus of this paper. It employs the bandwidth arbitration tools of the FSAN/ITU G.984.3 standard and maps SLA parameters to GPON service parameters to create an efficient, fair and flexible residential access system.
In the realm of the current industrial revolution, interesting innovations as well as new techniques are constantly being introduced by offering fertile ground for further investigation and improvement in the industrial engineering domain. More specifically, cutting-edge digital technologies in the field of Extended Reality (XR) have become mainstream including Augmented Reality (AR). Furthermore, Cloud Computing has enabled the provision of high-quality services, especially in the controversial field of maintenance. However, since modern machines are becoming more complex, maintenance must be carried out from experienced and well-trained personnel, while overseas support is timely and financially costly. Although AR is a back-bone technology facilitating the development of robust maintenance support tools, they are limited to the provision of predefined scenarios, covering only a limited number of scenarios. This research work aims to address this emerging challenge with the design and development of a framework, for the support of remote maintenance and repair operation based on AR, by creating suitable communication channels between the shop-floor technicians and the expert engineers who are utilizing real-time feedback from the operator's field of view. The applicability of the developed framework is tested in vitro in a lab-based machine shop and in a real-life industrial scenario.
In the era of Industry 4.0, manufacturing and production systems were revolutionized by increasing operational efficiency and developing and implementing new business models, services, and products. Concretely, the milestone set for Industry 4.0 was to improve the sustainability and efficiency of production systems. By extension, the emphasis was focused on both the digitization and the digitalization of systems, providing room for further improvement. However, the current technological evolution is more system/machine-oriented, rather than human-oriented. Thus, several countries have begun orchestrating initiatives towards the design and development of the human-centric aspect of technologies, systems, and services, which has been coined as Industry 5.0. The impact of Industry 5.0 will extend to societal transformation, which eventually leads to the generation of a new society, the Society 5.0. The developments will be focused on the social and human-centric aspect of the tools and technologies introduced under the framework of Industry 4.0. Therefore, sustainability and human well-being will be at the heart of what comes next, the Industry 5.0, as a subset of Society 5.0. Industry 5.0 will build on the foundations laid during Industry 4.0 by emphasizing human-centered, resilient, and sustainable design. Consequently, the authors in this research work, through a critical literature review, aim to provide adequate reasoning for considering Industry 5.0 as a framework for enabling the coexistence of industry and emerging societal trends and needs. The contribution of this research work extends to the provision of a framework to facilitate the transition from Industry 4.0 to Society 5.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.