Objectives: Current literature estimates the error rate associated with the preparation and administration of all intravenous (IV) medications to be 9.4% to 97.7% worldwide. This study aims to compare the number of observed medication preparation and administration errors between the only commercially available ready-to-administer product (Simplist) and IV push traditional practice, including a cartridge-based syringe system (Carpuject) and vials and syringes.Methods: A prospective, multisite, observational study was conducted in 3 health systems in various states within the United States between December 2015 and March 2016 to observe IV push medication preparation and administration. Researchers observed a ready-to-administer product and IV push traditional practice using a validated observational method and a modified data collection sheet. All observations were reconciled to the original medication order to determine if any errors occurred.Results: Researchers collected 329 observations (ready to administer = 102; traditional practice = 227) and observed 260 errors (ready to administer = 25; traditional practice = 235). The overall observed error rate for ready-to-administer products was 2.5%, and the observed error rate for IV push traditional practice was 10.4%. Conclusions:The ready-to-administer group demonstrated a statistically significant lower observed error rate, suggesting that use of this product is associated with fewer observed preparation and administration errors in the clinical setting. Future studies should be completed to determine the potential for patient harm associated with these errors and improve clinical practice because it relates to the safe administration of IV push medications.
The integrity of the pharmaceutical supply chain is threatened by medication counterfeiting, importation of unapproved and substandard drugs, and grey markets – all of which have the potential to distribute drug products with the potential for serious harm. On November 27, 2013, President Obama signed into law Title II of the Drug Quality and Security Act, now known as the Drug Supply Chain Security Act (DSCSA). Over the next 10 years, the DSCSA will require the pharmaceutical supply chain to implement medication tracking and tracing; serialization, verification, and detection of suspicious products; and strict guidelines for wholesaler licensing and reporting. This article reviews the important aspects of the DSCSA and outlines the role of health-system pharmacy leaders in ensuring compliance to the DSCSA. By verifying that medication supplies are free from adulteration and tampering, the DSCSA serves as a foundational law to ensure quality in providing patient-centered pharmacy services.
Big Data refers to datasets that are so large and complex that traditional methods and hardware for collecting, sharing, and analyzing them are not possible. Big Data that is accurate leads to more confident decision making, improved operational efficiency, and reduced costs. The rapid growth of health care information results in Big Data around health services, treatments, and outcomes, and Big Data can be used to analyze the benefit of health system pharmacy services. The goal of this article is to provide a perspective on how Big Data can be applied to health system pharmacy. It will define Big Data, describe the impact of Big Data on population health, review specific implications of Big Data in health system pharmacy, and describe an approach for pharmacy leaders to effectively use Big Data. A few strategies involved in managing Big Data in health system pharmacy include identifying potential opportunities for Big Data, prioritizing those opportunities, protecting privacy concerns, promoting data transparency, and communicating outcomes. As health care information expands in its content and becomes more integrated, Big Data can enhance the development of patient-centered pharmacy services.
Purpose The Third Consensus Conference on the Safety of Intravenous Drug Delivery Systems was convened to evaluate the benefits and risks of available systems and assess ongoing threats to the safety of intravenous drug delivery. Summary The Third Consensus Conference on the Safety of Intravenous Drug Delivery Systems convened in Chicago, Illinois in November 2018. An expert panel of healthcare providers with experience in medication quality and safety, pharmacy and nursing operations, information technology, and/or sterile compounding led the conference. An experienced audience of approximately 30 healthcare leaders provided feedback to the panel via preconference survey and during the conference. Additionally, expert speakers presented on a range of issues, including the effects of drug shortages, the impact of standards and guidelines, and patient and administrator perspectives on the importance of intravenous drug delivery safety. Conclusion At the end of the conference, the expert panel concluded that manufacturer ready-to-use products remain the safest intravenous drug delivery system due to their many benefits and low overall risk profile. The panel identified various ongoing threats to the safety of intravenous drug delivery, with major concerns including the impact of drug shortages and lack of intravenous product standardization. Finally, the panel agreed upon a series of statements designed to advance the safety of intravenous drug delivery in healthcare institutions.
Background: There are significant costs associated with proper controlled substance disposal, management, and regulatory compliance. Given the high abuse potential of fentanyl, hydromorphone, and morphine it is imperative that (1) product waste is minimized; and (2) waste procedures are followed to ensure safe disposal. Research is needed to better understand the financial and workforce impacts of drug waste on inpatient hospital units. The primary objective of this study was to quantify the waste associated with administering fentanyl, hydromorphone, and morphine via the intravenous push route. Two categories of waste were evaluated: (1) the quantity (mg/µg) of drug disposed; and (2) workforce time associated with the waste disposal process. Methods: A workflow time study design, a sub-set of continuous direct observation time motion studies, was employed to achieve the research objectives. A data collection tool was developed to capture medication type, waste amount, activity time stamps, total time, and number of interruptions at two separate study sites. Descriptive statistics were conducted on all the data measures. The number of assessments, total values, and mean values were reported for each drug (fentanyl, hydromorphone, and morphine) separately as well as grouped data. Results: A total of 669 distinct waste observations meeting inclusion criteria were collected during a study period of 15 days. In total, 207 mg of hydromorphone and 17 962.50 µg of fentanyl were wasted during this study. Nursing staff time associated with the wasting process totaled 50 990 seconds (849.83 minutes or 14.16 hours). A combined waste (loss) of approximately $1605.39 was associated with controlled substance wasting. The cost per dose wasted in this study was found to be $2.40 for all medications. When a yearly extrapolation model was applied to the four study units, the total combined product and workforce waste cost was $35 425. Conclusion: There are financially significant costs associated with wasting both the product and the valuable time of a skilled workforce. Optimizing product size, taking special note to match product availability with common practice use, would reduce the associated financial burden on our health-systems nationwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.