Colorectal cancer is the third most common cancer in the United States and responsible for over 50,000 deaths each year. Therapeutic options for advanced colorectal cancer are limited, and there remains an unmet clinical need to identify new treatments for this deadly disease. To address this need, we developed a precision medicine pipeline that integrates high-throughput chemical screens with matched patient-derived cell lines and patient-derived xenografts (PDX) to identify new treatments for colorectal cancer. High-throughput screens of 2,100 compounds were performed across six low-passage, patient-derived colorectal cancer cell lines. These screens identified the CDK inhibitor drug class among the most effective cytotoxic compounds across six colorectal cancer lines. Among this class, combined targeting of CDK1, 2, and 9 was the most effective, with IC50s ranging from 110 nmol/L to 1.2 μmol/L. Knockdown of CDK9 in the presence of a CDK2 inhibitor (CVT-313) showed that CDK9 knockdown acted synergistically with CDK2 inhibition. Mechanistically, dual CDK2/9 inhibition induced significant G2–M arrest and anaphase catastrophe. Combined CDK2/9 inhibition in vivo synergistically reduced PDX tumor growth. Our precision medicine pipeline provides a robust screening and validation platform to identify promising new cancer therapies. Application of this platform to colorectal cancer pinpointed CDK2/9 dual inhibition as a novel combinatorial therapy to treat colorectal cancer.
Colorectal cancer (CRC) is the third most prevalent form of cancer in the United States and results in over 50,000 deaths per year. Treatments for metastatic CRC are limited, and therefore there is an unmet clinical need for more effective therapies. In our prior work, we coupled high-throughput chemical screens with patient-derived models of cancer to identify new potential therapeutic targets for CRC. However, this pipeline is limited by (1) the use of cell lines that do not appropriately recapitulate the tumor microenvironment, and (2) the use of patient-derived xenografts (PDXs), which are time-consuming and costly for validation of drug efficacy. To overcome these limitations, we have turned to patient-derived organoids. Organoids are increasingly being accepted as a “standard” preclinical model that recapitulates tumor microenvironment cross-talk in a rapid, cost-effective platform. In the present work, we employed a library of natural products, intermediates, and drug-like compounds for which full synthesis has been demonstrated. Using this compound library, we performed a high-throughput screen on multiple low-passage cancer cell lines to identify potential treatments. The top candidate, psymberin, was further validated, with a focus on CRC cell lines and organoids. Mechanistic and genomics analyses pinpointed protein translation inhibition as a mechanism of action of psymberin. These findings suggest the potential of psymberin as a novel therapy for the treatment of CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.