Several lines of evidence suggest that neurotrophin administration may be of some therapeutic benefit in the treatment of peripheral neuropathy. However, a third of sensory neurons do not express receptors for the neurotrophins. These neurons are of small diameter and can be identified by the binding of the lectin IB4 and the expression of the enzyme thiamine monophosphatase (TMP). Here we show that these neurons express the receptor components for glial-derived neurotrophic factor (GDNF) signaling (RET, GFRalpha-1, and GFRalpha-2). In lumbar dorsal root ganglia, virtually all IB4-labeled cells express RET mRNA, and the majority of these cells (79%) also express GFRalpha-1, GFRalpha-2, or GFRalpha-1 plus GFRalpha-2. GDNF, but not nerve growth factor (NGF), can prevent several axotomy-induced changes in these neurons, including the downregulation of IB4 binding, TMP activity, and somatostatin expression. GDNF also prevents the slowing of conduction velocity that normally occurs after axotomy in a population of small diameter DRG cells and the A-fiber sprouting into lamina II of the dorsal horn. GDNF therefore may be useful in the treatment of peripheral neuropathies and may protect peripheral neurons that are refractory to neurotrophin treatment.
Neuropathic pain arises as a debilitating consequence of nerve injury. The etiology of such pain is poorly understood, and existing treatment is largely ineffective. We demonstrate here that glial cell line-derived neurotrophic factor (GDNF) both prevented and reversed sensory abnormalities that developed in neuropathic pain models, without affecting pain-related behavior in normal animals. GDNF reduces ectopic discharges within sensory neurons after nerve injury. This may arise as a consequence of the reversal by GDNF of the injury-induced plasticity of several sodium channel subunits. Together these findings provide a rational basis for the use of GDNF as a therapeutic treatment for neuropathic pain states.
Membrane electrical properties [time constant, action potential afterhyperpolarization (AHP), rheobase, input resistance, and axonal conduction velocity] were measured in motoneurons of cat medial gastrocnemius (MG) motor units. Motor units were classified on the basis of their mechanical responses as fast twitch, fast fatiguing (FF); fast twitch with intermediate fatigue resistance (FI); fast twitch, fatigue resistant (FR); or slow twitch, fatigue resistant (S; 11, 22). Motoneuron membrane time constant, estimated from the voltage response at the onset or termination of long (50-100 ms) current pulses and corrected for voltage-response nonlinearities (32), was found to differ significantly among the major motor-unit types, increasing in the order FF less than FR less than S. Afterhyperpolarization magnitude, half-decay time, and duration were all significantly greater for the fast (FF + FI + FR) versus the slow (S) motor units. The AHP half-decay time was correlated with muscle unit twitch time over the entire motoneuron population and within the type S motor-unit population. There was no significant correlation between twitch time and AHP half-decay time among the types FF and FR motor-unit populations. In agreement with previous studies, we found a significant difference in both rheobase and input resistance among the major motor-unit types, with rheobase increasing in the order S less than FR less than FF and input resistance decreasing in that order (S greater than FR greater than FF). The differences in input resistance were present both before and after correcting for voltage-response nonlinearities (32). Also in agreement with previous studies, the mean axonal conduction velocity was significantly faster among the fast (FF + FI + and FR) compared with the slow (S) motor units. These data were used to examine the properties alone to determine motor-unit type, which has traditionally been defined on the basis of the muscle unit's mechanical properties (11, 22). We used a discriminant analysis program to classify 73 mechanically typed motor units for which we had measures of rheobase, input resistance, membrane time constant, and AHP half-decay time. This model was able to properly classify 71 of the 73 motor units of this data set, indicating that the motor units of this data set could be grouped into three categories representing the three major motor-unit types (FF, FR, and S) on the basis of their rheobase, input resistance, membrane time constant, and AHP half-decay time.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.