Abnormal renovascular reactivity, characterized by paradoxical vasoconstriction to a reduction in renal perfusion pressure (RPP) in the autoregulatory range, increased sensitivity to renal nerve stimulation (RNS), and loss of vasodilatation to acetylcholine have all been demonstrated in ischemic acute renal failure (ARF). To determine if ischemic injury alters vascular contractility by increasing smooth muscle cell calcium or calcium influx, the renal blood flow (RBF) response to reductions in RPP within the autoregulatory range and to RNS were tested before and after a 90-min intrarenal infusion of verapamil or diltiazem in 7-d ischemic ARF rats. Both calcium entry blockers, verapamil and diltiazem, blocked the aberrant vasoconstrictor response to a reduction in RPP and RNS (both P < 0.001).In a second series of experiments the potential role of an ischemia-induced endothelial injury and of the absence of endothelium-derived relaxing factor (EDRF) production were examined to explain the lack of vasodilatation to acetylcholine. Acetylcholine, bradykinin (a second EDRF-dependent vasodilator), or prostacyclin, an EDRF-independent vasodilator, was infused intrarenally for 90 min, and RBF responses to a reduction in RPP and RNS were tested in 7-d ischemic ARF rats. Neither acetylcholine nor bradykinin caused vasodilatation or altered the slope of the relationship between RBF and RPP. By contrast, prostacyclin increased RBF (P < 0.001), but did not change the vascular response to changes in RPP.It was concluded that the abnormal pressor sensitivity to a reduction in RPP and RNS was due to changes in renovascular smooth muscle cell calcium activity that could be blocked by calcium entry blockers. A lack of response to EDRF-dependent vasodilators, as a result of ischemic endothelial injury, may contribute to the increased pressor sensitivity of the renal vessels.
To determine the mechanism of observed differences in vasoreactivity in norepinephrine-induced (NE) and renal artery clamp (RAC) models of ischemic acute renal failure (ARF), induction renal blood flow (RBF) was measured and vascular reactivity examined one week thereafter in NE- and RAC-ARF rat kidneys that had identical levels of renal dysfunction. Morphology also was compared at 48 hours and one week. In NE-ARF, RBF was 14% during 90 minutes of induction and by 60 minutes post-NE infusion was only 18% of baseline. In contrast, in RAC-ARF RBF was effectively 0 for 75 minutes but returned to 95% of baseline by 60 minutes after clamp release. At one week there was a paradoxical increase in renovascular resistance (RVR) to renal perfusion pressure (RPP) reduction in the autoregulatory range and an augmented vasoconstriction to renal nerve stimulation (RNS) in NE-ARF, but no change in RVR and minimal reduction in RBF to these same respective stimuli in RAC-ARF (both different at P less than 0.001). NE-ARF were more sensitive to intrarenal norepinephrine than RAC-ARF kidneys (P less than 0.001). Neither NE- nor RAC-ARF kidneys responded to endothelium-dependent acetylcholine (ACh). Vasodilation to endothelium-independent prostacyclin (PGI2) in NE- was similar to sham-ARF, but there was an attenuated response in RAC-ARF kidneys (P less than 0.001). Morphology at 48 hours showed smooth muscle necrosis in half of the resistance vessels in RAC- but in less than 10% of those in NE-ARF. Except for a slightly greater frequency of tubular casts at 48 hours in RAC-ARF, tubular injury was indistinguishable. It is concluded that NE-ARF has evidence of a predominant functional endothelial vascular injury while RAC-ARF has both morphologic and functional evidence of a predominant smooth muscle injury. Differences in vascular injury between the two models, at least in part, may be the consequence of differences in severity of initial ischemia and/or the rates of recovery of RBF; however, an additional or separate toxic effect of infused NE cannot be excluded.
Differential sensitivity of the pre- and postglomerular arterial vessels to vasoconstrictor activity of angiotensin II (ANG II) and norepinephrine (NE) is controversial. To avoid the complex extravascular neurohumoral variables that may have accounted for different results in the intact rat kidney, an isolated arteriole technique was used to examine the dose responses of ANG II and NE on afferent (AA) and efferent arterioles (EA) from Sprague-Dawley rats. EA were more sensitive than AA to ANG II (EC50 = 3.2 +/- 1.8 x 10(-11) and 1.0 +/- 1.6 x 10(-9) M, respectively, P less than 0.001), whereas EC50 of both AA and EA to NE were similar (3.4 +/- 2.3 x 10(-8) and 1.4 +/- 2.6 x 10(-8) M, respectively). The dose-response curves of AA to ANG II were not different when perfused at different luminal pressures (90 and 30 mmHg). In contrast, EA were more sensitive to ANG II at 30 than at 90 mmHg (3.0 +/- 1.2 x 10(-11) and 5.0 +/- 1.8 x 10(-10) M, respectively, P less than 0.005). The EC50 of EA to NE was unaffected by similar changes in luminal pressures. The mean dose-response curves of AA to ANG II were the same with and without the addition of 10(-5) M indomethacin; however, in arterioles displaying a focal constriction pattern to ANG II the response became uniform. It is concluded that, in the isolated rat glomerular arterioles, EA are more sensitive to ANG II than AA, but both vessels respond similarly to NE. The decreased ANG II sensitivity in AA is not related to the higher in vivo pressure, and the attenuated response in AA does not appear to be mediated primarily through ANG II-stimulated vasodilator prostanoid activity. EA sensitivity to ANG II appears to be inversely related to lumen pressure.
Lack of response to endothelium-dependent vasodilators generally has been considered to be evidence for decreased nitric oxide synthase (NOS) activity and NO generation after ischemic or hypoxic injury to vital organs including the kidney. In this study, renal blood flow (RBF) responses to endothelium-dependent vasodilators acetylcholine and bradykinin and the endothelium-independent vasodilator prostacyclin, the nonselective NOS inhibitor L-NAME (without and with L-arginine), the inducible NOS inhibitor aminoguanidine, and the NO-donor sodium nitroprusside were examined in 1-wk norepinephrine-induced (NE) and sham-induced acute renal failure (ARF) rats. Compared with sham-ARF, there was no increase in RBF to intrarenal acetylcholine and bradykinin, but a comparable RBF increase to prostacyclin in NE-ARF kidneys. However, there was a signiflcantiy greater decline in RBF to intravenous L-NAME in NE-than sham-ARF rats (-65±8 vs. -37±5%, P < 0.001) which was completely blocked by prior L-arginine infusion. There was no change in RBF to the inducible NOS specific inhibitor aminoguanidine. Unlike sham-ARF, there was no increase in RBF to intrarenal sodium nitroprusside in NE-ARF. Immunohistochemistry and immunofluorescence detection of constitutive (c) NOS using mouse monoclonal antibody were carried out to positively determine the presence of cNOS in NE-ARF. 90% of renal resistance vessels showed evidence of endothelial cNOS in both sham-and NE-ARF. Taken together, results of these experiments are consistent with the conclusion that NOS/NO activity is, in fact, maximal at baseline in 1-wk NE-ARF and cannot be increased further by exogenous stimuli of NOS activity. The increased NOS is likely of the constitutive form and of endothelial origin. It is suggested that the increased NOS activity Clin. Invest. 1995. 96:631-638.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.