Xylosandrus compactus (Eichhoff) is a serious pest of Coffea canephora and Theobroma cacao in Uganda and also attacks several common shade tree species often associated with these crops. Seedlings of 10 common hosts of X. compactus were screened for preferential infestation by X. compactus, with a view to analysing the potential role of the shade trees in escalating incidence and damage by the pest. The experiment was conducted for 8 weeks in a garden of mature C. canephora infested by X. compactus that served as a natural source of infestation for the seedlings. The seedlings that became infested by X. compactus were counted weekly and the counts subjected to generalized linear modelling. Results show marked host preference by X. compactus, with T. cacao and C. canephora being the most preferred, while Eucalyptus sp. and Albizia chinensis being the least preferred. Four simulated scenarios of incidence and damage by X. compactus on a preferred crop such as C. canephora are discussed. It is suggested that it is most unlikely for unpreferred alternate host shade tree species to markedly increase populations of X. compactus on shaded preferred host plants. However, these simulations, which are based on results from potted seedlings, need to be validated in a real field situation, taking into account other ecological parameters that are likely to influence pest populations.
Here, we review the advances in research on management of key oil palm insect pests globally, including defoliators, leaf/fruit scrapers, borers and sap feeders. The common oil palm pest management methods include synthetic insecticides, biopesticides, semiochemical lures, cultural practices, and integrated approaches. However, effectiveness, affordability, availability and impact of these methods on human and environmental health vary considerably based on the target insect and geographical location. The use of quarantine regulations to prevent the spread of invasive pests has also been applied with remarkable results. There are notable research advances in semiochemicals, bioacoustic detectors, nanotechnology, insect growth regulators, and entomophagy for better management of oil palm pests. We suggest the following research areas for improving effectiveness of oil palm pest management interventions: (i) exploration of semiochemical attractants for the majority of pests with no previous semiochemical work, and their integration in attract-and-kill devices laced with pathogenic microbes; (ii) expanding the application of digital sensing, predictive modeling and nano-technology in pest control strategies; (iii) developing effective technologies for mass trapping of edible insect pests for food or feed, especially among communities with a tradition of entomophagy; and (iv) strengthening regulatory frameworks for the management of quarantine oil palm insect pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.