Casing impairment leads to loss of pressure integrity, pinching of production tubing, or an inability to lower workover tools. Usually, impairment arises through shear owing to displacement of the rock strata along bedding planes or along more steeply inclined fault planes. These displacements are shear failures. They are triggered by stress concentrations generated by volume changes resulting from production or injection activity. Volume changes may arise from pressure changes, temperature changes, or solids movement (solids injection or production).Dominant casing-deformation mechanisms are localized horizontal shear at weak lithology interfaces within the overburden; localized horizontal shear at the top of production and injection intervals; and casing buckling within the producing interval, primarily located near perforations.Mitigating casing damage usually means reducing the amount of shear slip or finding a method of allowing slip or distortion to occur without immediately affecting the casing. Strengthening the casing-cement system seldom will eliminate shear, although in some circumstances it may retard it. Proper well location or inclination, underreaming, special completions approaches, reservoir management, and other methods exist to reduce the frequency or rate of casing shear.
Shearing MechanismsCasing shear is caused by rock shear. Rock shear is caused by changes in stress and pressure, induced by typical petroleumrecovery activities such as depletion, injection, and heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.