SUMMARY
Defining conditioning regimen intensity has become a critical issue for the hemopoietic stem cell transplant community. In the present report we propose to define conditioning regimens in three categories: (a) myeloablative conditioning (MA) , (b) reduced intensity conditioning (RIC) and (c) non myeloablative conditioning (NMA). Assignment to these categories is based on the duration of cytopenia and on the requirement for stem cell (SC) support: MA regimens cause irreversible cytopenia and SC support is mandatory. NMA regimens cause minimal cytopenia and can be given also without SC support. RIC regimens do not fit criteria for MA or NMA regimens : they cause cytopenia of variable duration and should be given with stem cell support, although cytopenia may not be irreversible. This report also assigns commonly used regimens to one of these categories. based upon the agents, dose or combinations. Standardized classification of conditioning regimen intensities will allow comparison across studies and interpretation of study results.
While genotyping wild red deer (Cervus elaphus) at microsatellite loci for paternity assignment, we found three loci (MAF65, BOVIRBP and CelJP23) with segregating nonamplifying alleles. Nonamplifying alleles were detected through mismatches between known mother-offspring pairs and by significant deviations from Hardy-Weinberg equilibria. In a wide range of molecular ecology application, and especially in parentage assignment, the possible existence of undetectable alleles must be taken into account; this may be particularly important for microsatellite data.
Prostate-specific membrane antigen (PSMA) is expressed in normal human prostate epithelium and is highly upregulated in prostate cancer. We previously reported a series of novel small molecule inhibitors targeting PSMA. Two compounds, MIP-1072, (S)-2-(3-((S)-1-carboxy-5-(4–iodobenzylamino)pentyl)ureido)pentanedioic acid and MIP-1095, (S)-2-(3-((S)-1-carboxy-5-(3-(4-iodophenyl)ureido)pentyl)ureido)pentanedioic acid, were selected for further evaluation. MIP-1072 and MIP-1095 potently inhibited the glutamate carboxypeptidase activity of PSMA (Ki = 4.6 ± 1.6 and 0.24 ± 0.14 nM, respectively), and when radiolabeled with 123I exhibited high affinity for PSMA on human prostate cancer LNCaP cells (Kd = 3.8 ± 1.3 and 0.81 ± 0.39 nM, respectively). The association of [123I]MIP-1072 and [123I]MIP-1095 with PSMA was specific; there was no binding to human prostate cancer PC3 cells, which lack PSMA, and binding was abolished by co-incubation with a structurally unrelated NAALADase inhibitor, 2-(phosphonomethyl)pentanedioic acid (PMPA). [123I]MIP-1072 and [123I]MIP-1095 internalized into LNCaP cells at 37 °C. Tissue distribution studies in mice demonstrated 17.3 ± 6.3 (at 1 hr) and 34.3 ± 12.7 (at 4 hr) % injected dose per gram of tissue, for [123I]MIP-1072 and [123I]MIP-1095, respectively. [123I]MIP-1095 exhibited greater tumor uptake but slower washout from blood and non-target tissues compared to [123I]MIP-1072. Specific binding to PSMA in vivo was demonstrated by competition with PMPA in LNCaP xenografts, and the absence of uptake in PC3 xenografts. The uptake of [123I]MIP-1072 and [123I]MIP-1095 in tumor bearing mice was corroborated by SPECT/CT imaging. PSMA-specific radiopharmaceuticals should provide a novel molecular targeting option for the detection and staging of prostate cancer.
Prostate specific membrane antigen (PSMA) is a validated molecular marker for prostate cancer. A series of glutamate-urea (Glu-urea-X) heterodimeric inhibitors of PSMA were designed and synthesized where X = epsilon-N-(o-I, m-I, p-I, p-Br, o-Cl, m-Cl, p-Cl, p-F, H)-benzyl-Lys and epsilon-(p-I, p-Br, p-Cl, p-F, H)-phenylureido-Lys. The affinities for PSMA were determined by screening in a competitive binding assay. PSMA binding of the benzyllysine series was significantly affected by the nature of the halogen substituent (IC(50) values, Cl < I = Br << F = H) and the ring position of the halogen atom (IC(50) values, p-I < o-I << m-I). The halogen atom had little affect on the binding affinity in the para substituted phenylureido-Lys series. Two lead iodine compounds were radiolabeled with (123)I and (131)I and demonstrated specific PSMA binding on human prostate cancer cells, warranting evaluation as radioligands for the detection, staging, and monitoring of prostate cancer.
We demonstrate the feasibility of in vivo "molecular" MRI for the detection of acute and subacute thrombosis using a novel fibrin-binding MRI contrast agent in an animal model of atherosclerosis and acute/subacute thrombosis. Potential clinical applications include thrombus detection in acute coronary syndromes and stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.