An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow™.
Gas-solid multiphase flows are commonly used in chemical processing, petroleum fluid catalytic cracking, and other industrial applications. The distribution of the solid phase in gas-solid flows (generally in the form of small particles) is seldom uniform, but more commonly involves clusters, streamers, and core-annular distributions, depending on the flow orientation and the overall gas and solid flowrates and their ratio. For this reason, tomographic techniques are of great interest for measurement of cross-sectional solids distributions in such flows. The cross-sectional profiles of solids loading can be integrated to yield a cross-sectionally averaged solids loading. Determination of this averaged solids loading is needed to understand the axial variations of solids loading and its sensitivity to flow parameters and to optimize performance. A common technique for determining volume-averaged solids loading in vertical flows like the riser section of a circulating fluidized bed (CFB) is by measurement of the time-averaged axial pressure gradients along the riser axis (differential pressure or ΔP method). Neglecting acceleration and wall friction, the axial momentum balance simplifies to equate the multiphase hydrostatic pressure term with the pressure gradient along the axis. Many authors (e.g., Louge and Chang, 1990) have pointed out the neglected terms in this approach and generally show that ΔP is applicable in the special cases of no solids-loading gradient (fully developed flow) or small solids flux. A more generally applicable technique for measuring solids loading in gas-solid flows is gamma tomography. A gamma tomography system using a 100-mCi Cs-137 source collimated into a fan beam and an array of scintillation detectors, has been developed and implemented for application to a cold-flow (non-reacting) CFB. The CFB has a 14-cm-ID 6-m tall riser, and is currently operated with a multiphase mixture of air and fluid catalytic cracking (FCC) catalyst particles. Typical operating conditions include mean superficial gas velocities up to 7.4 m/s and solids fluxes up to approximately 100 kg/m2·s. Quantitative comparison of gamma- and ΔP-determined solids loadings was made over a range of operating conditions (combination of superficial gas velocity and solids flux). Results indicate that the differences between gamma and ΔP-determined cross-sectionally averaged solids loading are most pronounced near the base of the riser, where solids concentration is highest and the mixture is accelerating. Higher in the riser, the agreement is better. Additionally, the difference is larger in cases of higher superficial gas velocity. In addition, several studies were performed to design an electrical-impedance tomography (EIT) system for a gas-solid flow to collect data suitable for validating computational models. A two-electrode bulk impedance system was studied experimentally. The required accuracy, spatial resolution and temporal resolution of an EIT system are addressed, and modeling and reconstruction are discussed. Bulk solid volume fractions measured by the two-electrode system and by gamma-densitometry tomography are in general agreement. Experiments with the two-electrode system also show that the Maxwell-Hewitt relation, used to convert the mixture impedance to solid volume fraction, must be applied carefully, paying attention to the identity of the dispersed and continuous phases. The design of a 16-electrode system is also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.