The traditional role attributed to white adipose tissue is energy storage, fatty acids being released when fuel is required. The metabolic role of white fat is, however, complex. For example, the tissue is needed for normal glucose homeostasis and a role in inflammatory processes has been proposed. A radical change in perspective followed the discovery of leptin; this critical hormone in energy balance is produced principally by white fat, giving the tissue an endocrine function. Leptin is one of a number of proteins secreted from white adipocytes, which include angiotensinogen, adipsin, acylation-stimulating protein, adiponectin, retinol-binding protein, tumour neorosis factor a, interleukin 6, plasminogen activator inhibitor-1 and tissue factor. Some of these proteins are inflammatory cytokines, some play a role in lipid metabolism, while others are involved in vascular haemostasis or the complement system. The effects of specific proteins may be autocrine or paracrine, or the site of action may be distant from adipose tissue. The most recently described adipocyte secretory proteins are fasting-induced adipose factor, a fibrinogen–angiopoietin-related protein, metallothionein and resistin. Resistin is an adipose tissue-specific factor which is reported to induce insulin resistance, linking diabetes to obesity. Metallothionein is a metal-binding and stress-response protein which may have an antioxidant role. The key challenges in establishing the secretory functions of white fat are to identify the complement of secreted proteins, to establish the role of each secreted protein, and to assess the pathophysiological consequences of changes in adipocyte protein production with alterations in adiposity (obesity, fasting, cachexia). There is already considerable evidence of links between increased production of some adipocyte factors and the metabolic and cardiovascular complications of obesity. In essence, white adipose tissue is a major secretory and endocrine organ involved in a range of functions beyond simple fat storage.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypeptides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.
Metallothionein (MT) has several putative roles in metal detoxification, in Zn and Cu homeostasis, in scavenging free radicals, and in the acute phase response. Mice of mixed 129͞Ola and C57BL͞6J background with targeted disruption of MT-I and MT-II genes are more sensitive to toxic metals and oxidative stress. We noted that these animals were larger than most strains of mice, and we systematically studied aspects of their physiology and biochemistry relating to energy metabolism. During the first 2 weeks after weaning, the growth rates of MT-null and C57BL͞6J mice were similar, but the transgenic mice became significantly heavier at age 5-6 weeks. At age 14 weeks, the body weight and food intake of MT-null mice was 16 and 30% higher, respectively, compared with C57BL͞6J mice. Most 22-to 39-week-old male MT-null mice were obese, as shown by increased fat accretion, elevated obese (ob) gene expression, and high plasma leptin levels, similar to those recorded in Zucker fatty ( fa͞fa) rats. Seven-week-old MT-null mice also had significantly higher levels of plasma leptin and elevated expression of ob, lipoprotein lipase, and CCAAT enhancer binding protein ␣ genes as compared with age-matched C57BL͞6J mice. These observations indicate that abnormal accretion of body fat and adipocyte maturation is initiated at 5-7 weeks of age, possibly coincident with sexual maturation. Targeted disruption of MT-I and MT-II genes seems to induce moderate obesity, providing a new obese animal model. A link between MT and the regulation of energy balance is implied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.