Abstract. Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are used widely for uncertain reasoning in artificial intelligence. In this paper, we investigate the problem of learning probabilistic networks with known structure and hidden variables. This is an important problem, because structure is much easier to elicit from experts than numbers, and the world is rarely fully observable. We present a gradient-based algorithm and show that the gradient can be computed locally, using information that is available as a byproduct of standard inference algorithms for probabilistic networks. Our experimental results demonstrate that using prior knowledge about the structure, even with hidden variables, can significantly improve the learning rate of probabilistic networks. We extend the method to networks in which the conditional probability tables are described using a small number of parameters. Examples include noisy-OR nodes and dynamic probabilistic networks. We show how this additional structure can be exploited by our algorithm to speed up the learning even further. We also outline an extension to hybrid networks, in which some of the nodes take on values in a continuous domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.