Acidic isoferritins have been identified as leukemia-associated inhibitory activity (LIA), which suppresses colony and cluster formation of colony-forming unit-granulocyte macrophages from normal donors but not from patients with leukemia. LIA was detected in all ferritin preparations tested, including ferritin isolated from normal heart, spleen, liver, and placental tissues, and from the spleens of patients with chronic myelogenous leukemia and Hodgkin's disease. Purified preparations of LIA were composed almost entirely of acidic isoferritins, as determined by immunoassay, radioimmunoassay, and isoelectric focusing. The inhibitory activity in the LIA and ferritin samples was inactivated by a battery of antisera specific for ferritin, including those prepared against acidic isoferritins from normal heart and spleen tissues from patients with Hodgkin's disease, and those previously absorbed with basic isoferritins. Antisera absorbed with acidic isoferritins did not inactivate the inhibitory activity. Separation of LIA and chronic myelogenous leukemia and normal spleen ferritin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing confirmed that the regions of peak inhibitory activity corresponded in each to an apparent molecular weight of approximately 550,000 and to a pI value of 4.7. Similar physicochemical characteristics included inactivation by methods that dissociate ferritin molecules into subunits and by treatment with trypsin, chymotrypsin, pronase, and periodate. The purified preparations were extremely stable to heat treatment. The glycoprotein nature of the inhibitory activity was substantiated because it bound to concanavalin A-Sepharose and was eluted off by alpha-methyl mannose. Inhibitory activity of the activity of the acidic isoferritins was detected at concentrations as low as 10(-17)-10(-19) M and iron saturation did not appear to be necessary for its action. These results implicate acidic isoferritins in the regulation of normal myelopoiesis and suggest a role for them in the progression of leukemia.
Tissue factor (TF) has been implicated in several important biologic processes, including fibrin formation, atherogenesis, angiogenesis, and tumor cell migration. In that plasminogen activators have been implicated in the same processes, the potential for interactions between TF and the plasminogen activator system was examined. Plasminogen was found to bind directly to the extracellular domain of TF apoprotein (amino acids 1-219) as determined by optical biosensor interaction analysis. A fragment of plasminogen containing kringles 1 through 3 also bound to TF apoprotein, whereas isolated kringle 4 and miniplasminogen did not. Expression of TF on the surface of a stably transfected Chinese hamster ovary (CHO) cell line stimulated plasminogen binding to the cells by 70% more than to control cells. Plasminogen bound to a site on the TF apoprotein that appears to be distinct from the binding site for factors VII and VIIa as judged by a combination of biosensor and cell assays. TF enhanced two-chain urokinase (tcuPA) activation of Glu-plasminogen, but not of miniplasminogen, in a dose-dependent, saturable manner (half maximal stimulation at 59 pmol/L). TF apoprotein induced an effect similar to that of relipidated TF, but a relatively higher concentration of the apoprotein was required (half maximal stimulation at 3.8 nmol/L). The stimulatory effect of TF on plasminogen activation was confirmed when plasmin formation was examined directly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In accord with this, TF inhibited fibrinolysis by approximately 74% at a concentration of 14 nmol/L and almost totally inhibited the binding of equimolar concentrations of plasminogen to human umbilical vein endothelial cells and human trophoblasts. Further, CHO cells expressing TF inhibited uPA-mediated fibrinolysis relative to a wild-type control. TF apoprotein and plasminogen were found to colocalize in atherosclerotic plaque. These data suggest that plasminogen localization and activation may be modulated at extravascular sites through a high-affinity interaction between kringles 1 through 3 of plasminogen and the extracellular domain of TF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.