We introduce a flexible projection framework that is capable of modeling a wide variety of linear, nonlinear, and hand-tailored artistic projections with a single camera. This framework introduces a unified geometry for all of these types of projections using the concept of a flexible viewing volume. With a parametric representation of the viewing volume, we obtain the ability to create curvy volumes, curvy near and far clipping surfaces, and curvy projectors. Through a description of the framework's geometry, we illustrate its capabilities to recreate existing projections and reveal new projection variations. Further, we apply two techniques for rendering the framework's projections: ray casting, and a limited GPU based scanline algorithm that achieves real-time results.
Synthesizing terrain or adding detail to terrains manually is a long and tedious process. With procedural synthesis methods this process is faster but more difficult to control. This paper presents a new technique of terrain synthesis that uses an existing terrain to synthesize new terrain. To do this we use multi-resolution analysis to extract the high-resolution details from existing models and apply them to increase the resolution of terrain. Our synthesized terrains are more heterogeneous than procedural results, are superior to terrains created by texture transfer, and retain the large-scale characteristics of the original terrain.
A driving force behind the design of increasingly large and high resolution displays (LHRDs) has been the need to support the explosion of data in the natural sciences such as physics, chemistry, and biology. However, our experience with an LHRD accessible to researchers across multiple disciplines has shown that they are useful for a wide range of research activities involving large images and data. We conducted in-context, semi-structured interviews with researchers from a variety of disciplines about their experiences using the LHRD with their own data. Notably, it became apparent that the size and resolution of the LHRD supported a multitude of activities related to observation, for which zooming or other enlargement methods on standard resolution screens were not sufficient. The interview findings lead to implications for further research into supporting a broader range of disciplines in using large, high-resolution displays.
We expand multitouch tabletop information exploration by placing 2D information on a physically-based cloth in a shallow 3D viewing environment. Instead of offering 2D information on a rigid window or screen, we place our information on a soft flexible cloth that can be draped, pulled, stretched, and folded with multiple fingers and hands, supporting any number of information views. Combining our multitouch flexible information cloth with simple manipulable objects provides a physically-based information viewing environment that offers similar advantages to complex detailin-context viewing. Previous detail-in-context views can be re-created by draping cloth over virtual objects in this physics simulation, thereby approximating many of the existing techniques by providing zoomed-in information in the context of zoomed-out information. These detail-in-context views are approximated because, rather than use distortion, the draped cloth naturally drapes and folds showing magnified regions within a physically understandable context. In addition, the information cloth remains flexibly responsive, allowing one to tweak, unfold, and smooth out regions as desired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.