† Co-first authors Magnetic tunnel junctions (MTJs), composed of two ferromagnetic electrodes separated by a thin insulating barrier layer, are currently used in spintronic devices, such as magnetic sensors and magnetic random access memories. Recently, driven by demonstrations of ferroelectricity at the nanoscale, thin-film ferroelectric barriers were proposed to extend the functionality of MTJs. Due to the sensitivity of conductance to the magnetization alignment of the electrodes (tunnelling magnetoresistance) and the polarization orientation in the ferroelectric barrier (tunnelling electroresistance), these multiferroic tunnel junctions (MFTJs) may serve as four-state resistance devices. Based on first-principles calculations we demonstrate four resistance states in SrRuO 3 /BaTiO 3 /SrRuO 3 MFTJs with asymmetric interfaces. We find that the resistance of such a MFTJ is significantly changed when the electric polarization of the barrier is reversed and/or when the magnetizations of the electrodes are switched from parallel to antiparallel. These results reveal the exciting prospects of MFTJs for application as multifunctional spintronic devices.The field of spintronics has been successful in producing magnetoresistive devices for magnetic memory and sensor applications.
The range of recently discovered phenomena in complex oxide heterostructures, made possible owing to advances in fabrication techniques, promise new functionalities and device concepts. One issue that has received attention is the bistable electrical modulation of conductivity in ferroelectric tunnel junctions (FTJs) in response to a ferroelectric polarization of the tunnelling barrier, a phenomenon known as the tunnelling electroresistance (TER) effect. Ferroelectric tunnel junctions with ferromagnetic electrodes allow ferroelectric control of the tunnelling spin polarization through the magnetoelectric coupling at the ferromagnet/ferroelectric interface. Here we demonstrate a significant enhancement of TER due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Ferroelectric tunnel junctions consisting of BaTiO3 tunnelling barriers and La(0.7)Sr(0.3)MnO3 electrodes exhibit a TER enhanced by up to ~10,000% by a nanometre-thick La(0.5)Ca(0.5)MnO3 interlayer inserted at one of the interfaces. The observed phenomenon originates from the metal-to-insulator phase transition in La(0.5)Ca(0.5)MnO3, driven by the modulation of carrier density through ferroelectric polarization switching. Electrical, ferroelectric and magnetoresistive measurements combined with first-principles calculations provide evidence for a magnetoelectric origin of the enhanced TER, and indicate the presence of defect-mediated conduction in the FTJs. The effect is robust and may serve as a viable route for electronic and spintronic applications.
The control of magnetization via the application of an electric field, known as magnetoelectric coupling, is among the most fascinating and active research areas today. In addition to fundamental scientific interest, magnetoelectric effects may lead to new device concepts for data storage and processing. There are several known mechanisms for magnetoelectric coupling that include intrinsic effects in single-phase materials, straininduced coupling in two-phase composites, and electronically driven effects at interfaces. Here we explore a different type of magnetoelectric effect at a ferromagnetic-ferroelectric interface: magnetic reconstruction induced by switching of electric polarization. We demonstrate this effect using first-principles calculations of a La 1−x A x MnO 3 / BaTiO 3 ͑001͒ interface, where A is a divalent cation. By choosing the doping level x to be near a transition between magnetic phases we show that the reversal of the ferroelectric polarization of BaTiO 3 leads to a change in the magnetic order at the interface from ferromagnetic to antiferromagnetic. This predicted electrically induced magnetic reconstruction at the interface represents a substantial interfacial magnetoelectric effect.
We explore the effect of charge carrier doping on ferroelectricity using density functional calculations and phenomenological modeling. By considering a prototypical ferroelectric material, BaTiO 3 , we demonstrate that ferroelectric displacements are sustained up to the critical concentration of 0.11 electron per unit cell volume. This result is consistent with experimental observations and reveals that the ferroelectric phase and conductivity can coexist. Our investigations show that the ferroelectric instability requires only a short-range portion of the Coulomb force with an interaction range of the order of the lattice constant. These results provide a new insight into the origin of ferroelectricity in displacive ferroelectrics and open opportunities for using doped ferroelectrics in novel electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.