a b s t r a c tMODIS 250-m NDVI and EVI datasets are now regularly used to classify regional-scale agricultural land-use practices in many different regions of the globe, especially in the state of Mato Grosso, Brazil, where rapid land-use change due to agricultural development has attracted considerable interest from researchers and policy makers. Variation exists in which MODIS datasets are used, how they are processed for analysis, and what ground reference data are used. Moreover, various land-use/land-cover classes are ultimately resolved, and as yet, crop-specific classifications (e.g. soy-corn vs. soy-cotton double crop) have not been reported in the literature, favoring instead generalized classes such as single vs. double crop. The objective of this study is to present a rigorous multiyear evaluation of the applicability of time-series MODIS 250-m VI data for crop classification in Mato Grosso, Brazil. This study shows progress toward more refined crop-specific classification, but some grouping of crop classes remains necessary. It employs a farm field polygon-based ground reference dataset that is unprecedented in spatial and temporal coverage for the state, consisting of 2003 annual field site samples representing 415 unique field sites and five crop years (2005)(2006)(2007)(2008)(2009)). This allows for creation of a dataset containing "best-case" or "pure" pixels, which we used to test class separability in a multiyear cross validation framework applied to boosted decision tree classifiers trained on MODIS data subjected to different pre-processing treatments. Reflecting the agricultural landscape of Mato Grosso as a whole, cropping practices represented in the ground reference dataset largely involved soybeans, and soy-based classes (primarily double crop 'soy-commercial' and single crop 'soy-cover') dominated the analysis along with cotton and pasture. With respect to the MODIS data treatments, the best results were obtained using date-ofacquisition interpolation of the 16-day composite VI time series and outlier point screening, for which five-year out-of-sample accuracies were consistently near or above 80% and Kappa values were above 0.60. It is evident that while much additional research is required to fully and reliably differentiate more specific crop classes, particular groupings of cropping strategies are separable and useful for a number of applications, including studies of agricultural intensification and extensification in this region of the world.
Previous research has established the usefulness of remotely sensed vegetation index (VI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to characterize the spatial dynamics of agriculture in the state of Mato Grosso (MT), Brazil. With these data it has become possible to track MT agriculture, which accounts for ~85% of Brazilian Amazon soy production, across periods of several years. Annual land cover (LC) maps support investigation of the spatiotemporal dynamics of agriculture as they relate to forest cover and governance and policy efforts to lower deforestation rates. We use a unique, spatially extensive 9-year (2005–2013) ground reference dataset to classify, with approximately 80% accuracy, MODIS VI data, merging the results with carefully processed annual forest and sugarcane coverages developed by Brazil’s National Institute for Space Research to produce LC maps for MT for the 2001–2014 crop years. We apply the maps to an evaluation of forest and agricultural intensification dynamics before and after the Soy Moratorium (SoyM), a governance effort enacted in July 2006 to halt deforestation for the purpose of soy production in the Brazilian Amazon. We find the pre-SoyM deforestation rate to be more than five times the post-SoyM rate, while simultaneously observing the pre-SoyM forest-to-soy conversion rate to be more than twice the post-SoyM rate. These observations support the hypothesis that SoyM has played a role in reducing both deforestation and subsequent use for soy production. Additional analyses explore the land use tendencies of deforested areas and the conceptual framework of horizontal and vertical agricultural intensification, which distinguishes production increases attributable to cropland expansion into newly deforested areas as opposed to implementation of multi-cropping systems on existing cropland. During the 14-year study period, soy production was found to shift from predominantly single-crop systems to majority double-crop systems.
This paper argues against what we call ‘the local trap’, in which development researchers and practitioners falsely assume that localized decision-making is inherently more socially just or ecologically sustainable. The local trap constrains research on a range of topics in development research, including productive conservation networks, agro-forestry, community-based natural resource management, common property regimes and community-based collaboration. We use recent research on scale in political and economic geography to argue that scales and scalar arrangements are socially constructed through political struggle; they are never ontologically given. In other words, there is nothing inherent about any scale or scalar arrangement. Therefore, an arrangement in which resources or decisions are controlled locally is no more likely to lead to ecologically sustainable or socially just outcomes than an arrangement in which the regional, national or global scale predominates. Because scales are produced through socio-political struggle, the outcomes of a given scalar arrangement are dependent on the political agenda(s) of those empowered by the arrangement. When we start from the assumption that there is nothing inherent about scale, we cannot assume the political and ecological dynamics of a particular scalar configuration. We must instead make those dynamics the object of critical inquiry. The paper uses a case study of beekeeping in the Brazilian Amazon to illustrate the range of both positive and negative outcomes that can result when decision-making is localized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.