People with transtibial amputation often experience skin breakdown due to the pressures and shear stresses that occur at the limb-socket interface. The purpose of this research was to create a transtibial finite element model (FEM) of a contemporary prosthesis that included complete socket geometry, two frictional interactions (limb-liner and liner-socket), and an elastomeric liner. Magnetic resonance imaging scans from three people with characteristic transtibial limb shapes (i.e., short-conical, long-conical, and cylindrical) were acquired and used to develop the models. Each model was evaluated with two loading profiles to identify locations of focused stresses during stance phase. The models identified five locations on the participants' residual limbs where peak stresses matched locations of mechanically induced skin issues they experienced in the 9 months prior to being scanned. The peak contact pressure across all simulations was 98 kPa and the maximum resultant shear stress was 50 kPa, showing reasonable agreement with interface stress measurements reported in the literature. Future research could take advantage of the developed FEM to assess the influence of changes in limb volume or liner material properties on interface stress distributions. Graphical abstract Residual limb finite element model. Left: model components. Right: interface pressures during stance phase.
Background: The term 'sock ply' may be a source of confusion in prosthetics practice because there may not be a consistent relationship between sock ply and sock thickness. Objectives: The purpose of this study was to characterize how sock ply related to sock thickness for different sock materials commonly used in limb prosthetics. We also evaluated how sock thickness changed under loading conditions experienced while wearing a lower limb prosthesis compared with unstressed conditions. Study Design: Experimental. Mechanical assessment. Methods: Seven sock materials of varying ply and sheaths were tested using a custom instrument. Sock thickness under eight different compressive stress conditions and two different biaxial in-plane tensile strain conditions were measured. Results: For socks woven from a single material, thickness under walking stance phase conditions averaged 0.7, 1.2 and 1.5 mm for 1, 3 and 5-ply, respectively. For socks woven from several materials, the corresponding results were 0.4, 0.7 and 0.8 mm, respectively. Sock ply did not sum, e.g. a 3-ply sock was not three times the thickness of a 1-ply sock. Conclusions: Sock thickness and compressive stiffness are strongly dependent upon sock material, interface pressure, and in-plane biaxial strain. Clinical relevanceData may be useful towards selecting socks during fitting and towards understanding volume changes induced by adding socks. An alternative nomenclature for thickness based on sheath equivalence may be more intuitive to practitioners and to the industry.
Introduction Typical practitioners choose from among only two to three products when selecting liners for their patients. A lack of comparable objective information about similarities and differences among elastomeric liner products may be part of the reason. Methods Commonly used, commercially available polyurethane, silicone, and thermoplastic elastomer (TPE) liners were tested for their compressive, shear, tensile, and volumetric elasticities as well as their coefficients of friction (CoFs) and thermal conductivities. Results Polyurethane and silicone liners tended to be stiffer in compression and shear than TPE liners. Fabric backings contributed primarily to increased tensile elasticity (and thus reduced pistoning). Polyurethane liners demonstrated relatively low CoFs, whereas silicone and TPE liners had higher CoFs and wider ranges. All materials tested were essentially incompressible. Thermal conductivities of all materials were comparable and similar to that of leather. Conclusions Polyurethane liners are softer and less sticky than 16 years ago, and TPE liners have higher tensile stiffness than previously. A stiff fabric backing can increase tensile stiffness by more than 200%. Compressive stiffness may be used to characterize a liner’s ability to flow. Elastomeric liners move heat almost exclusively via conduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.