SUMMARYThis review aims to clarify the underlying risk of arrhythmia associated with the use of macrolides and fluoroquinolones antibiotics. Torsades de pointes (TdP) is a rare potential side effect of fluoroquinolones and macrolide antibiotics. However, the widespread use of these antibiotics compounds the problem. These antibiotics prolong the phase 3 of the action potential and cause early after depolarization and dispersion of repolarization that precipitate TdP. The potency of these drugs, as potassium channel blockers, is very low, and differences between them are minimal. Underlying impaired cardiac repolarization is a prerequisite for arrhythmia induction. Impaired cardiac repolarization can be congenital in the young or acquired in adults. The most important risk factors are a prolonged baseline QTc interval or a combination with class III antiarrhythmic drugs. Modifiable risk factors, including hypokalemia, hypomagnesemia, drug interactions, and bradycardia, should be corrected. In the absence of a major risk factor, the incidence of TdP is very low. The use of these drugs in the appropriate settings of infection should not be altered because of the rare risk of TdP, except among cases with high-risk factors.
Intracellular recordings were made from rabbit nodose neurones in vitro. Two temporally distinct spike after‐hyperpolarizations (a.h.p.s) were identified in a subpopulation of C‐type neurones. The fast a.h.p. after a single spike lasted no longer than 500 ms, while the slow a.h.p. persisted for seconds. Both a.h.p.s. were increased in amplitude in low K+ (0.56 mM) solutions and decreased in amplitude in high K+ (11.2 mM) solutions, and both were reversed at hyperpolarized membrane potentials. The slow a.h.p. was reduced in low Ca2+ (0.22 mM), in the presence of Ca2+ antagonists (Ni2+, 1 mM; Cd2+, 100 microM; or Co2+, 1 mM) and was enhanced in tetraethylammonium (5 mM). In approximately half of the cells tested, the fast a.h.p. was reduced in low Ca2+ and in the presence of the Ca2+ antagonists. In the remaining cells the fast a.h.p. was insensitive to these procedures. Prostaglandin (PGE1, 1‐10 micrograms/ml) reduced the slow a.h.p. in all cells tested. Neither the Ca2+‐sensitive nor the Ca2+‐insensitive fast a.h.p. was affected by the prostaglandin. It is concluded that there is a subpopulation of C‐type nodose neurones possessing a slow a.h.p. which is due to a Ca2+‐dependent K+ current. This subpopulation of neurones can further be divided on the basis of the presence of a Ca2+‐sensitive fast a.h.p. Furthermore, PGE1 pharmacologically separates the fast and slow a.h.p.s by selectively blocking the slow one. The blockage by the PGE1 is most probably not due to a reduction in Ca2+ influx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.