Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.
Background and Objectives Human fertility is attained following puberty due to finely orchestrated events driven by hypothalamic release of the excitatory neuropeptide neurokinin B (NKB), which in turn stimulates the release of kisspeptin and then GnRH to activate the downstream pituitary-gonadal axis. Our group has identified that loss-of-function mutations in Makorin Ring Finger Protein 3 (MKRN3) cause central precocious puberty (CPP). Mkrn3 is highly expressed in the hypothalamus of both male and female mice in early postnatal life, then declines prior to the onset of puberty. Mutations in MKRN3 E3 ubiquitin ligase domain, identified in patients with CPP, result in reduced auto-ubiquitination. However, the mechanisms of action of MKRN3 and its targets remain largely unknown. We hypothesized that MKRN3 inhibits the reproductive axis through interactions with hypothalamic substrates, targeting them to degradation pathways. Methods and Results Using interactome analysis and candidate approaches in vitro, we identified poly(A) binding protein cytoplasmic 1 and 4 (PABPC1 and 4) and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) as MKRN3 interactors, consistent with reports from other research groups. Additionally, our proteomic analysis revealed that Igf2bp1 levels are increased in the hypothalamus of Mkrn3 knockout (KO) mice versus wild type animals. Remarkably, we found that MKRN3-IGF2BP1 interaction is mediated by RNA, as their interaction was abrogated by RNase treatment. However, an MKRN3 missense mutation associated with CPP, p.C364F, within the E3 ubiquitin ligase domain, did not affect the RNA mediated interaction. Preliminary data from RNA co-IP, aiming to identify putative RNA targets, suggested that MKRN3 and IGF2BP1 bind to TAC3 mRNA. We further identified an increase in Nkb protein levels in the hypothalamus of Mkrn3 KO mice. We also showed that NKB is a substrate of MKRN3 E3 ubiquitin ligase activity in vitro by demonstrating increased ubiquitination of NKB in cells co-transfected with expression vectors encoding MKRN3 and NKB and treated with proteasome inhibitor. Additionally, MKRN3 overexpression resulted in degradation of NKB protein by western blot analysis, and alteration of NKB intracellular localization by immunofluorescence. These effects were impaired by MKRN3 missense mutations (p.C340G and p.C364F) in the E3 ubiquitin ligase motif, suggesting a pathophysiological mechanism of MKRN3 mutations in CPP. Conclusions We identified that MKRN3 interacts with PABPC1, PABPC4 and IGF2BP1 and targets NKB to degradation. We showed that NKB degradation was mediated by the MKRN3 E3 ubiquitin ligase domain, as mutations within this motif abrogated NKB degradation. However, this mutation did not affect MKRN3 RNA-mediated binding to IGF2BP1, highlighting that multiple domains of MKRN3 may contribute to its actions. Here, we propose a mechanism by which MKRN3, interacting with PABPCs and IGF2BP1 and targeting NKB for degradation, may act to inhibit the reproductive axis. Presentation: Sunday, June 12, 2022 11:00 a.m. - 11:15 a.m.
Context Loss-of-function mutations in the maternally imprinted genes, MKRN3 and DLK1, are associated with central precocious puberty (CPP). Mutations in MKRN3 are the most common known genetic etiology of CPP. Objective To screen patients with CPP for MKRN3 and DLK1 mutations and analyze the effects of identified mutations on protein function in vitro. Setting Five academic medical institutions. Participants Eighty-four unrelated children with CPP (79 females, 5 males) and, when available, their first-degree relatives. Design Sanger sequencing of MKRN3 and DLK1 5’ upstream flanking and coding regions was performed on DNA extracted from peripheral blood leukocytes. Western blot analysis was performed to assess protein ubiquitination profiles. Results Eight heterozygous MKRN3 mutations were identified in 9 unrelated girls with CPP. Five are novel missense mutations, two were previously identified in patients with CPP, and one is a frameshift variant not previously associated with CPP. No pathogenic variants were identified in DLK1. Girls with MKRN3 mutations had an earlier age of initial pubertal signs and higher basal serum LH and FSH compared to girls with CPP without MRKN3 mutations. Western blot analysis revealed that compared to wild-type MKRN3, mutations within the RING finger domain reduced ubiquitination whereas the mutations outside this domain increased ubiquitination. Conclusions MKRN3 mutations were present in 10.7% of our CPP cohort, consistent with previous studies. The novel identified mutations in different domains of MKRN3 revealed different patterns of ubiquitination, suggesting distinct molecular mechanisms by which the loss of MRKN3 results in early pubertal onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.