We present a strategy for adoptive immunotherapy using T-lineage committed lymphoid precursor cells generated by Notch1-based culture. We found that allogeneic T-cell precursors can be transferred to irradiated individuals irrespective of major histocompatibility complex (MHC) disparities and give rise to host-MHC restricted and host-tolerant functional allogeneic T cells, improving survival in irradiated recipients as well as enhancing anti-tumor responses. T-cell precursors transduced to express a chimeric receptor targeting hCD19 resulted in significant additional anti-tumor activity, demonstrating the feasibility of genetic engineering of these cells. We conclude that ex vivo generated MHC-disparate T-cell precursors from any donor can be used universally for 'off-the-shelf' immunotherapy, and can be further enhanced by genetic engineering for targeted immunotherapy.
Abstract-In an attempt to synthesize DNA containing 2 0 -deoxy-5-(trifluoromethyl)uridine (1) using previously published protocols, we found that the trifluoromethyl group converted into a cyano group, resulting in DNA containing 5-cyano-2 0 -deoxyuridine (3). We show that nucleoside 1 can be incorporated into DNA using phosphoramidite 2 in combination with acetyl-protected deoxycytidine and phenoxyacetyl-protected purine phosphoramidites. Replacing thymidine in DNA with 1 caused a slight decrease in DNA duplex stability at pH 6.9. #
We have developed a dual bioluminescent reporter system allowing noninvasive, concomitant imaging of T-cell trafficking, expansion, and activation of nuclear factor of activated T cells (NFAT) in vivo. NFAT activation plays an important role in T-cell activation and T-cell development. Therefore we used this system to determine spatialtemporal activation patterns of (1)
NA was applied to and successfully used in the majority of patients with suspected MAP. Our findings support selective conversion to GA during hysterectomy in these patients, focusing on those with the highest levels of surgical complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.