Loss of anatomical form due to wear has been cited as one factor limiting the clinical use of posterior composites. The physical properties and possibly the wear resistance of composite are influenced by the extent to which it is cured. The aim of this study was to vary degree of conversion (DC) in composites to test the hypothesis that resistance to wear and marginal breakdown could be improved by enhanced curing. A light-cured hybrid composite containing a 50% Bis-GMA/50% TEGDMA resin and 62 vol% of strontium glass (1 to 2 microm) with microfill silica was formulated (Bisco). Composite was placed into two 2.5-mm-diameter cylindrical holes in Co-Cr teeth replacing first and second molars in the mandibular dentures of 50 edentulous patients. The composites were light-cured for different time periods (9 s, 12 s, 25 s, 40 s, and 40 s + 10 min at 120 degrees C) and then polished. The microfill Heliomolar was also tested. DC (%) was measured by FTIR and ranged between 55% for 9 s of light-curing and 67% for 40 s of light-curing followed by heat application. Impressions were evaluated at baseline, 6 mo, 1 yr, and 2 yrs. Stone casts were evaluated independently by three observers to determine the % of the total margin exhibiting breakdown. Epoxy replicas were measured with a profilometer for wear. Wear of the hybrid composite at 2 yrs ranged from a high of 144 microm with 9 s of light-curing to a low of 36 microm with 40 s of light-curing followed by heat. Heliomolar exhibited from 11 to 16 microm of wear at 2 yrs. There was a strong negative correlation (r2 = 0.91) between the degree of cure and the abrasive wear of the hybrid composites. Marginal breakdown was negligible for the hybrids, and was reduced for the microfill from 40% to 15% of the margin by heat treatment. This study showed that the resistance to abrasive wear of a dental composite could be improved by enhancement of its degree of conversion.
The objective of this study was to test the hypothesis that a degraded subsurface layer containing microcracks is produced in dental composites as a result of finishing procedures. Various composites in the form of rectangular bars were finished with a 12-fluted carbide bur or a fine diamond within minutes of light-curing, and were subsequently stained with silver nitrate. Microscopic evaluation revealed that significant penetration of stain occurred in the unfinished as well as in the finished surfaces. The extent of dye penetration that could be directly attributed to a damaged layer produced by the finishing procedure was less than 10 microns, being greatest for a microfill (Silux Plus) and a hybrid (P-50) composite. There was no difference between the effects of the finishing instruments. SEM analysis of the subsurface showed an absence of any cracks for the composites. However, occasional disruption of the interface between the pre-polymerized resin fillers and the matrix was apparent for the microfill material. The results showed that only a very limited subsurface damage may be created in certain composites during the initial contouring of a restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.