Brainstorm is a collaborative open-source application dedicated to magnetoencephalography (MEG) and electroencephalography (EEG) data visualization and processing, with an emphasis on cortical source estimation techniques and their integration with anatomical magnetic resonance imaging (MRI) data. The primary objective of the software is to connect MEG/EEG neuroscience investigators with both the best-established and cutting-edge methods through a simple and intuitive graphical user interface (GUI).
Abstract-A solution of the forward problem is an important component of any method for computing the spatio-temporal activity of the neural sources of magnetoencephalography (MEG) and electroencephalography (EEG) data. The forward problem involves computing the scalp potentials or external magnetic field at a finite set of sensor locations for a putative source configuration. We present a unified treatment of analytical and numerical solutions of the forward problem in a form suitable for use in inverse methods. This formulation is achieved through factorization of the lead field into the product of the moment of the elemental current dipole source with a "kernel matrix" that depends on the head geometry and source and sensor locations, and a "sensor matrix" that models sensor orientation and gradiometer effects in MEG and differential measurements in EEG. Using this formulation and a recently developed approximation formula for EEG, based on the "Berg parameters," we present novel reformulations of the basic EEG and MEG kernels that dispel the myth that EEG is inherently more complicated to calculate than MEG. We also present novel investigations of different boundary element methods (BEM's) and present evidence that improvements over currently published BEM methods can be realized using alternative error-weighting methods. Explicit expressions for the matrix kernels for MEG and EEG for spherical and realistic head geometries are included.Index Terms-Boundary element method (BEM), electroencephalogram (EEG), forward model, head modeling, realistic head model, spherical head model.
An array of biomagnetometers may be used to measure the spatio-temporal neuromagnetic field or magnetoencephalogram (MEG) produced by neural activity in the brain. A popular model for the neural activity produced in response to a given sensory stimulus is a set of current dipoles, where each dipole represents the primary current associated with the combined activation of a large number of neurons located in a small volume of the brain. An important problem in the interpretation of MEG data from evoked response experiments is the localization of these neural current dipoles. We present here a linear algebraic framework for three common spatio-temporal dipole models: i) unconstrained dipoles, ii) dipoles with a fixed location, and iii) dipoles with a fixed orientation and location. In all cases, we assume that the location, orientation, and magnitude of the dipoles are unknown. With a common model, we show how the parameter estimation problem may be decomposed into the estimation of the time invariant parameters using nonlinear least-squares minimization, followed by linear estimation of the associated time varying parameters. A subspace formulation is presented and used to derive a suboptimal least-squares subspace scanning method. The resulting algorithm is a special case of the well-known MUltiple SIgnal Classification (MUSIC) method, in which the solution (multiple dipole locations) is found by scanning potential locations using a simple one dipole model. Principal components analysis (PCA) dipole fitting has also been used to individually fit single dipoles in a multiple dipole problem. Analysis is presented here to show why PCA dipole fitting will fail in general, whereas the subspace method presented here will generally succeed. Numerically efficient means of calculating the cost functions are presented, and problems of model order selection and missing moments are discussed. Results from a simulation and a somatosensory experiment are presented.
The spherical head model has been used in magnetoencephalography (MEG) as a simple forward model for calculating the external magnetic fields resulting from neural activity. For more realistic head shapes, the boundary element method (BEM) or similar numerical methods are used, but at greatly increased computational cost. We introduce a sensor-weighted overlapping-sphere (OS) head model for rapid calculation of more realistic head shapes. The volume currents associated with primary neural activity are used to fit spherical head models for each individual MEG sensor such that the head is more realistically modelled as a set of overlapping spheres, rather than a single sphere. To assist in the evaluation of this OS model with BEM and other head models, we also introduce a novel comparison technique that is based on a generalized eigenvalue decomposition and accounts for the presence of noise in the MEG data. With this technique we can examine the worst possible errors for thousands of dipole locations in a realistic brain volume. We test the traditional single-sphere model, three-shell and single-shell BEM, and the new OS model. The results show that the OS model has accuracy similar to the BEM but is orders of magnitude faster to compute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.