Increasing widespread use of educational technologies is producing vast amounts of data. Such data can be used to help advance our understanding of student learning and enable more intelligent, interactive, engaging, and effective education. In this article, we discuss the status and prospects of this new and powerful opportunity for data-driven development and optimization of educational technologies, focusing on intelligent tutoring systems We provide examples of use of a variety of techniques to develop or optimize the select, evaluate, suggest, and update functions of intelligent tutors, including probabilistic grammar learning, rule induction, Markov decision process, classification, and integrations of symbolic search and statistical inference.
Abstract. Deep analysis of domain content yields novel insights and can be used to produce better courses. Aspects of such analysis can be performed by applying AI and statistical algorithms to student data collected from educational technology and better cognitive models can be discovered and empirically validated in terms of more accurate predictions of student learning. However, can such improved models yield improved student learning? This paper reports positively on progress in closing this loop. We demonstrate that a tutor unit, redesigned based on data-driven cognitive model improvements, helped students reach mastery more efficiently. In particular, it produced better learning on the problem-decomposition planning skills that were the focus of the cognitive model improvements.
Systematic endeavors to take computer science (CS) and computational thinking (CT) to scale in middle and high school classrooms are underway with curricula that emphasize the enactment of authentic CT skills, especially in the context of programming in block-based programming environments. There is, therefore, a growing need to measure students’ learning of CT in the context of programming and also support all learners through this process of learning computational problem solving. The goal of this research is to explore hypothesis-driven approaches that can be combined with data-driven ones to better interpret student actions and processes in log data captured from block-based programming environments with the goal of measuring and assessing students’ CT skills. Informed by past literature and based on our empirical work examining a dataset from the use of the Fairy Assessment in the Alice programming environment in middle schools, we present a framework that formalizes a process where a hypothesis-driven approach informed by Evidence-Centered Design effectively complements data-driven learning analytics in interpreting students’ programming process and assessing CT in block-based programming environments. We apply the framework to the design of Alice tasks for high school CS to be used for measuring CT during programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.