Polyphenol oxidases (PPOs; EC 1.10.3.2 or EC 1.14.18.1) catalyzing the oxygen-dependent oxidation of phenols to quinones are ubiquitous among angiosperms and assumed to be involved in plant defense against pests and pathogens. In order to investigate the role of PPO in plant disease resistance, we made transgenic tomato ( Lycopersicon esculentum Mill. cv. Money Maker) plants that overexpressed a potato ( Solanum tuberosum L.) PPO cDNA under control of the cauliflower mosaic virus 35S promoter. The transgenic plants expressed up to 30-fold increases in PPO transcripts and 5- to 10-fold increases in PPO activity and immunodetectable PPO. As expected, these PPO-overexpressing transgenic plants oxidized the endogenous phenolic substrate pool at a higher rate than control plants. Three independent transgenic lines were selected to assess their interaction with the bacterial pathogen Pseudomonas syringae pv. tomato. The PPO-overexpressing tomato plants exhibited a great increase in resistance to P. syringae. Compared with control plants, these transgenic lines showed less severity of disease symptoms, with over 15-fold fewer lesions, and strong inhibition of bacterial growth, with over 100-fold reduction of bacterial population in the infected leaves. These results demonstrate the importance of PPO-mediated phenolic oxidation in restricting plant disease development.
We report the isolation and characterization of seven nuclear genes encoding polyphenol oxidase (PPO) in tomato (Lycopersicon esculentum cv. VFNT Cherry). The seven genes (PPOs A, A', B, C, D, E and F) fall into three structural classes (I, II, and III) based on Eco RI and Hind III restriction fragment length polymorphisms (RFLP). RFLP mapping and PFGE analysis demonstrated that the genes reside on chromosome 8, and may be clustered within a 165 kb region. Phage insert mapping demonstrated PPO E and PPO F (both class III), and PPOs B, D and A (classes I, II and I respectively) are grouped within separate 12.4 kb clusters. The complete nucleotide sequence was determined for each gene. Comparison to cDNAs revealed that the PPOs lack introns. A transcript of about 2 kb is expected for each PPO. Each PPO possesses a region encoding a transit peptide characteristic of polypeptides targeted to the thylakoid lumen. Predicted precursor polypeptides range in mass from 66 to 71 kDa and predicted mature polypeptides range from 57 to 62 kDa. All the PPOs encode two putative copper-binding sites characteristic of bacterial, fungal and mammalian tyrosinases. Five of the seven PPOs possess divergent DNA sequences in their 5' promoter regions. These flanking sequence differences may regulate the differential expression of PPO genes.
The tomato nuclear genome was determined to have a G + C content of 37% which is among the lowest reported for any plant species. Non-coding regions have a G + C content even lower (32% average) whereas coding regions are considerably richer in G + C (46%). 5-methyl cytosine was the only modified base detected and on average 23% of the cytosine residues are methylated. Immature tissues and protoplasts have significantly lower levels of cytosine methylation (average 20%) than mature tissues (average 25%). Mature pollen has an intermediate level of methylation (22%). Seeds gave the highest value (27%), suggesting de novo methylation after pollination and during seed development. Based on isoschizomer studies we estimate 55% of the CpG target sites (detected by Msp I/Hpa II) and 85% of the CpNpG target sites (detected by Bst NI/Eco RI) are methylated. Unmethylated target sites (both CpG and CpNpG) are not randomly distributed throughout the genome, but frequently occur in clusters. These clusters resemble CpG islands recently reported in maize and tobacco. The low G + C content and high levels of cytosine methylation in tomato may be due to previous transitions of 5mC----T. This is supported by the fact that G + C levels are lowest in non-coding portions of the genome in which selection is relaxed and thus transitions are more likely to be tolerated. This hypothesis is also supported by the general deficiency of methylation target sites in the tomato genome, especially in non-coding regions. Using methylation isoschizomers and RFLP analysis we have also determined that polymorphism between plants, for cytosine methylation at allelic sites, is common in tomato. Comparing DNA from two tomato species, 20% of the polymorphisms detected by Bst NI/Eco RII could be attributed to differential methylation at the CpNpG target sites. With Msp I/Hpa II, 50% of the polymorphisms were attributable to methylation (CpG and CpNpG sites). Moreover, these polymorphisms were demonstrated to be inherited in a mendelian fashion and to co-segregate with the methylation target site and thus do not represent variation for transacting factors that might be involved in methylation of DNA. The potential role of heritable methylation polymorphism in evolution of gene regulation and in RFLP studies is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.