MERGENCY DEPARTMENTS (EDS) are unique portals for health care in the United States because services are provided to all persons regardless of insurance or ability to pay. 1 As such, the Institute of Medicine has labeled EDs as "the Safety Net of the Safety Net . . . the provider of last resort for millions of patients who are uninsured or lack adequate access to care from community providers." 2 Among all EDs, the Centers for Disease Control and Prevention (CDC) further identified a subset as safety-net EDs because these EDs provide a disproportionate share of services to Medicaid and uninsured persons. Specifically, safety-net EDs are facilities that provide more than 30% of total ED visits to persons with Medicaid, more than 30% of total ED visits to uninsured individuals, or a combined Medicaid and uninsured patient population greater than 40%. 3 Since the 1990s, visits to US EDs have steadily increased and the total number of EDs has declined. 4,5 Meanwhile, the number of uninsured persons has increased from 38.8 million in 1999 to 46.3 million in 2008 and Medicaid enrollment has increased from 28.5 million in 1999 to 42.6 million in 2008. 6 Previous research shows that privately insured persons accounted for most of the increase in ED visits be-tween 1996 and 2001. 7 However, recent studies suggest an increasing number of uninsured and underinsured persons contributing to ED visits. [8][9][10] Patients who cannot obtain timely access to primary care often make frequent ED visits and often present with more severe illness and complications. 11,12 This study examines changes in ED visit rates in the United States between 1997 and 2007, detailing differences between sociodemographic sub-groups. To evaluate the hypothesis that EDs are serving in a safety-net role for an increasing segment of the US population, we specifically examined trends in ED visit rates according to insur-See also p 679.
Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Rationale: Current clinical prediction scores for acute lung injury (ALI) have limited positive predictive value. No studies have evaluated predictive plasma biomarkers in a broad population of critically ill patients or as an adjunct to clinical prediction scores. Objectives: To determine whether plasma angiopoietin-2 (Ang-2), von Willebrand factor (vWF), interleukin-8 (IL-8), and/or receptor for advanced glycation end products (sRAGE) predict ALI in critically ill patients. Methods: Plasma samples were drawn from critically ill patients (n ¼ 230) identified in the emergency department. Patients who had ALI at baseline or in the subsequent 6 hours were excluded, and the remaining patients were followed for development of ALI. Measurements and Main Results: Nineteen patients developed ALI at least 6 hours after the sample draw. Higher levels of Ang-2 and IL-8 were significantly associated with increased development of ALI (P ¼ 0.0008, 0.004, respectively). The association between Ang-2 and subsequent development of ALI was robust to adjustment for sepsis and vasopressor use. Ang-2 and the Lung Injury Prediction Score each independently discriminated well between those who developed ALI and those who did not (area under the receiver operating characteristic curve, 0.74 for each), and using the two together improved the area under the curve to 0.84 (vs. 0.74, P ¼ 0.05). In contrast, plasma levels of sRAGE and vWF were not predictive of ALI. Conclusions: Plasma biomarkers such as Ang-2 can improve clinical prediction scores and identify patients at high risk for ALI. In addition, the early rise of Ang-2 emphasizes the importance of endothelial injury in the early pathogenesis of ALI.
Background Surgery is the main modality of cure for solid cancers and was prioritised to continue during COVID-19 outbreaks. This study aimed to identify immediate areas for system strengthening by comparing the delivery of elective cancer surgery during the COVID-19 pandemic in periods of lockdown versus light restriction. Methods This international, prospective, cohort study enrolled 20 006 adult (≥18 years) patients from 466 hospitals in 61 countries with 15 cancer types, who had a decision for curative surgery during the COVID-19 pandemic and were followed up until the point of surgery or cessation of follow-up (Aug 31, 2020). Average national Oxford COVID-19 Stringency Index scores were calculated to define the government response to COVID-19 for each patient for the period they awaited surgery, and classified into light restrictions (index <20), moderate lockdowns (20–60), and full lockdowns (>60). The primary outcome was the non-operation rate (defined as the proportion of patients who did not undergo planned surgery). Cox proportional-hazards regression models were used to explore the associations between lockdowns and non-operation. Intervals from diagnosis to surgery were compared across COVID-19 government response index groups. This study was registered at ClinicalTrials.gov , NCT04384926 . Findings Of eligible patients awaiting surgery, 2003 (10·0%) of 20 006 did not receive surgery after a median follow-up of 23 weeks (IQR 16–30), all of whom had a COVID-19-related reason given for non-operation. Light restrictions were associated with a 0·6% non-operation rate (26 of 4521), moderate lockdowns with a 5·5% rate (201 of 3646; adjusted hazard ratio [HR] 0·81, 95% CI 0·77–0·84; p<0·0001), and full lockdowns with a 15·0% rate (1775 of 11 827; HR 0·51, 0·50–0·53; p<0·0001). In sensitivity analyses, including adjustment for SARS-CoV-2 case notification rates, moderate lockdowns (HR 0·84, 95% CI 0·80–0·88; p<0·001), and full lockdowns (0·57, 0·54–0·60; p<0·001), remained independently associated with non-operation. Surgery beyond 12 weeks from diagnosis in patients without neoadjuvant therapy increased during lockdowns (374 [9·1%] of 4521 in light restrictions, 317 [10·4%] of 3646 in moderate lockdowns, 2001 [23·8%] of 11 827 in full lockdowns), although there were no differences in resectability rates observed with longer delays. Interpretation Cancer surgery systems worldwide were fragile to lockdowns, with one in seven patients who were in regions with full lockdowns not undergoing planned surgery and experiencing longer preoperative delays. Although short-term oncological outcomes were not compromised in those selected for surgery, delays and non-operations might lead to long-term reductions in survival. During current and future periods of societal restriction, the resilience of elective surgery systems requires strengthening, which might include...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.