Species replacements along freshwater permanence gradients are well documented, but underlying mechanisms are poorly understood for most taxa. In subalpine wetlands in Colorado, the relative abundance of caddisfly larvae shifts from temporary to permanent basins. Predators on caddisflies also shift along this gradient; salamanders (Ambystoma tigrinum nebulosum) in permanent ponds are replaced by predaceous diving beetles (Dytiscus dauricus) in temporary habitats. We conducted laboratory and field experiments to determine the effectiveness of caddisfly cases in reducing vulnerability to these predators. We found that larvae of a temporary-habitat caddisfly (Asynarchus nigriculus) were the most vulnerable to salamanders. Two relatively invulnerable species (Limnephilus externus, L. picturatus) exhibited behaviors that reduced the likelihood of detection and attack, whereas the least vulnerable species (Agrypnia deflata) was frequently detected and attacked, but rarely captured because cases provided an effective refuge. Vulnerability to beetle predation was also affected by cases. The stout cases of L. externus larvae frequently deterred beetle larvae, whereas the tubular cases of the other species were relatively ineffective. Two of these vulnerable species (A. nigriculus and L. picturatus) often co-occur with beetles; thus, case construction alone is insufficient to explain patterns of caddisfly coexistence along the permanence gradient. One explanation for the coexistence of these two species with beetles is that they develop rapidly during early summer and pupate before beetle larvae become abundant. One species (L. picturatus) pupates by burying into soft substrates that serve as a refuge. The other (A. nigriculus) builds stone pupal cases, which in field experiments, more than doubles survival compared to organic pupal cases. The combined results of these experiments suggest that caddisfly distributions along permanence gradients depend on a suite of primary and secondary predator defenses that include larval and pupal case structure, predator-specific escape behaviors, and the phenology of larval development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.