Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and cardiac optogenetics at the cell and organ level and provide guidance for the development of in vivo tools.
Optogenetics has emerged as an alternative method for electrical control of the heart, where illumination is used to elicit a bioelectric response in tissue modified to express photosensitive proteins (opsins). This technology promises to enable evocation of spatiotemporally precise responses in targeted cells or tissues, thus creating new possibilities for safe and effective therapeutic approaches to ameliorate cardiac function. Here, we present a comprehensive framework for multi-scale modelling of cardiac optogenetics, allowing both mechanistic examination of optical control and exploration of potential therapeutic applications. The framework incorporates accurate representations of opsin channel kinetics and delivery modes, spatial distribution of photosensitive cells, and tissue illumination constraints, making possible the prediction of emergent behaviour resulting from interactions at sub-organ scales. We apply this framework to explore how optogenetic delivery characteristics determine energy requirements for optical stimulation and to identify cardiac structures that are potential pacemaking targets with low optical excitation threshold.
The improvement of preclinical cardiotoxicity testing, discovery of new ion-channel-targeted drugs, and phenotyping and use of stem cell-derived cardiomyocytes and other biologics all necessitate high-throughput (HT), cellular-level electrophysiological interrogation tools. Optical techniques for actuation and sensing provide instant parallelism, enabling contactless dynamic HT testing of cells and small-tissue constructs, not affordable by other means. Here we show, computationally and experimentally, the limits of all-optical electrophysiology when applied to drug testing, then implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We validate optical actuation by virally introducing optogenetic drivers in rat and human cardiomyocytes or through the modular use of dedicated light-sensitive somatic ‘spark' cells. We show that this automated all-optical approach provides HT means of cellular interrogation, that is, allows for dynamic testing of >600 multicellular samples or compounds per hour, and yields high-content information about the action of a drug over time, space and doses.
Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current-a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation is not feasible due to electrochemical limitations. Our analysis offers insights for designing future new energy-efficient stimulation strategies in heart or brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.