Broad-spectrum insecticide resistance was detected for codling moth. Resistance to azinphos-methyl, lambda-cyhalothrin and methoxyfenozide was associated with reduced residual activity in the field. Broad-spectrum resistance presents serious problems for management of the codling moth in Michigan.
Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1–2 apple tree injections of either streptomycin, potassium phosphites (PH), or acibenzolar-S-methyl (ASM), significant reduction of blossom and shoot blight symptoms was observed compared to water injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2, and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR) under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control.
BACKGROUND: The invasive drosophilid pest, Drosophila suzukii Matsumura, is affecting berry production in most fruit-producing regions of the world. Chemical control is the dominant management approach, creating concern for insecticide resistance in this pest. We compared the insecticide susceptibility of D. suzukii populations collected from conventional, organic or insecticide-free blueberry sites.
RESULTS
A primary goal of The Pennsylvania State University's new Engineering Entrepreneurship (E‐SHIP) Minor is to build students' life skills so they can succeed within innovative, product‐focused, cross‐disciplinary teams. The E‐SHIP Minor is designed for undergraduate students majoring in engineering, business, or IST (Information Sciences and Technology) who aspire to be innovation leaders for new technology‐based products and companies. This paper outlines five E‐SHIP program components to meet this mission: the core courses for the minor, E‐SHIP competitions in which students exhibit their products and ideas, the E‐SHIP Event Series, student organizations to support out‐of‐classroom entrepreneurial interest, and team projects for local industry and Penn State researchers. Penn State's engineering entrepreneurship program is reviewed, summarizing both quantitative and qualitative assessment data to date, previewing future assessment plans, and providing a summary of lessons learned during the development and implementation of this program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.