Measurements of hepatic iron concentration (HIC) are important predictors of transfusional iron burden and long-term outcome in patients with transfusiondependent anemias. The goal of this work was to develop a readily available, noninvasive method for clinical HIC measurement. The relaxation rates R2 (1/ T2) and R2* (1/ T2*) measured by magnetic resonance imaging (MRI) have different advantages for HIC estimation. This article compares noninvasive iron estimates using both optimized R2 and R2* methods in 102 patients with iron overload and 13 controls. In the iron-overloaded group, 22 patients had concurrent liver biopsy. R2 and R2* correlated closely with HIC (r 2 > .95) for HICs between 1.33 and 32.9 mg/g, but R2 had a curvilinear relationship to HIC. Of importance, the R2 calibration curve was similar to the curve generated by other researchers, despite significant differences in technique and instrumentation. Combined R2 and R2* measurements did not yield more accurate results than either alone. Both R2 and R2* can accurately measure hepatic iron concentration throughout the clinically relevant range of HIC with appropriate MRI acquisition techniques. (Blood.
Background Measurement of myocardial iron is key to the clinical management of patients at risk of siderotic cardiomyopathy. The cardiovascular magnetic resonance (CMR) relaxation parameter R2* (assessed clinically via its reciprocal T2*) measured in the ventricular septum is used to assess cardiac iron, but iron calibration and distribution data in humans is limited. Methods and Results Twelve human hearts were studied from transfusion dependent patients following either death (heart failure n=7, stroke n=1) or transplantation for end-stage heart failure (n=4). After CMR R2* measurement, tissue iron concentration was measured in multiple samples of each heart using inductively coupled plasma atomic emission spectroscopy. Iron distribution throughout the heart showed no systematic variation between segments, but epicardial iron concentration was higher than in the endocardium. The mean (±SD) global myocardial iron causing severe heart failure in 10 patients was 5.98 ±2.42mg/g dw (range 3.19–9.50), but in 1 outlier case of heart failure was 25.9mg/g dw. Myocardial ln[R2*] was strongly linearly correlated with ln[Fe] (R2=0.910, p<0.001) leading to [Fe]=45.0•(T2*)−1.22 for the clinical calibration equation with [Fe] in mg/g dw and T2* in ms. Mid-ventricular septal iron concentration and R2* were both highly representative of mean global myocardial iron. Conclusions These data detail the iron distribution throughout the heart in iron overload and provide calibration in humans for CMR R2* against myocardial iron concentration. The iron values are of considerable interest with regard to the level of cardiac iron associated with iron-related death and indicate that the heart is more sensitive to iron loading than the liver. The results also validate the current clinical practice of monitoring cardiac iron in-vivo by CMR of the mid septum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.